scholarly journals The role of droplet sedimentation in the evolution of low level clouds over Southern West Africa

2018 ◽  
Author(s):  
Christopher Dearden ◽  
Adrian Hill ◽  
Hugh Coe ◽  
Tom Choularton

Abstract. Large eddy simulations are performed to investigate the influence of cloud microphysics on the evolution of low level clouds that form over southern West Africa during the monsoon season. We find that, even in clouds that are not precipitating, the size of cloud droplets has a non-negligible effect on liquid water path. This is explained through the effects of droplet sedimentation, which acts to remove liquid water from the entrainment zone close to cloud top, increasing liquid water path. Sedimentation also produces a more heterogeneous cloud structure and lowers cloud base height. Our results imply that an appropriate parameterization of the effects of sedimentation is required to improve the representation of the diurnal cycle of the atmospheric boundary layer over southern West Africa in large-scale models.

2018 ◽  
Vol 18 (19) ◽  
pp. 14253-14269 ◽  
Author(s):  
Christopher Dearden ◽  
Adrian Hill ◽  
Hugh Coe ◽  
Tom Choularton

Abstract. Large-eddy simulations are performed to investigate the influence of cloud microphysics on the evolution of low-level clouds that form over southern West Africa during the monsoon season. We find that, even in clouds that are not precipitating, the size of cloud droplets has a non-negligible effect on liquid water path. This is explained through the effects of droplet sedimentation, which acts to remove liquid water from the entrainment zone close to cloud top, increasing the liquid water path. Sedimentation also produces a more heterogeneous cloud structure and lowers cloud base height. Our results imply that an appropriate parameterization of the effects of sedimentation is required to improve the representation of the diurnal cycle of the atmospheric boundary layer over southern West Africa in large-scale models.


2008 ◽  
Vol 65 (8) ◽  
pp. 2705-2718 ◽  
Author(s):  
Irina Sandu ◽  
Jean-Louis Brenguier ◽  
Olivier Geoffroy ◽  
Odile Thouron ◽  
Valery Masson

Abstract Recent large-eddy simulation (LES) studies of the impact of aerosol on the dynamics of nocturnal marine stratocumulus revealed that, depending on the large-scale forcings, an aerosol-induced increase of the droplet concentration can lead to either an increase or a decrease of the liquid water path, hence contrasting with the cloud thickening that is expected from a reduction of the precipitation efficiency. In this study, the aerosol impacts on cloud microphysics are examined in the context of the boundary-layer diurnal cycle using 36-h LES simulations of pristine and polluted clouds. These simulations corroborate previous findings that during nighttime aerosol-induced liquid water path changes are sensitive to the large-scale forcings via enhancement of cloud-top entrainment such that, ultimately, the liquid water path may be reduced when the free-tropospheric-entrained air is drier. During the day, however, enhanced entrainment, inhibition of drizzle evaporation below cloud base, and reduced sensible heat flux from the surface lead to a more pronounced decoupling of the boundary layer, which significantly amplifies the liquid water path reduction of the polluted clouds. At night the sign of the liquid water path difference between pristine and polluted clouds depends upon large-scale forcings, while during the day the liquid water path of polluted clouds is always smaller than the one of the pristine clouds. Suggestions are made on how observational studies could be designed for validation of these simulations.


2020 ◽  
Vol 13 (3) ◽  
pp. 1485-1499 ◽  
Author(s):  
Maria P. Cadeddu ◽  
Virendra P. Ghate ◽  
Mario Mech

Abstract. The partition of cloud and drizzle water path in precipitating clouds plays a key role in determining the cloud lifetime and its evolution. A technique to quantify cloud and drizzle water path by combining measurements from a three-channel microwave radiometer (23.8, 30, and 90 GHz) with those from a vertically pointing Doppler cloud radar and a ceilometer is presented. The technique is showcased using 1 d of observations to derive precipitable water vapor, liquid water path, cloud water path, drizzle water path below the cloud base, and drizzle water path above the cloud base in precipitating stratocumulus clouds. The resulting cloud and drizzle water path within the cloud are in good qualitative agreement with the information extracted from the radar Doppler spectra. The technique is then applied to 10 d each of precipitating closed and open cellular marine stratocumuli. In the closed-cell systems only ∼20 % of the available drizzle in the cloud falls below the cloud base, compared to ∼40 % in the open-cell systems. In closed-cell systems precipitation is associated with radiative cooling at the cloud top <-100Wm-2 and a liquid water path >200 g m−2. However, drizzle in the cloud begins to exist at weak radiative cooling and liquid water path >∼150 g m−2. Our results collectively demonstrate that neglecting scattering effects for frequencies at and above 90 GHz leads to overestimation of the total liquid water path of about 10 %–15 %, while their inclusion paves the path for retrieving drizzle properties within the cloud.


2020 ◽  
Vol 20 (6) ◽  
pp. 3459-3481 ◽  
Author(s):  
Rosa Gierens ◽  
Stefan Kneifel ◽  
Matthew D. Shupe ◽  
Kerstin Ebell ◽  
Marion Maturilli ◽  
...  

Abstract. Low-level mixed-phase clouds (MPCs) are common in the Arctic. Both local and large-scale phenomena influence the properties and lifetime of MPCs. Arctic fjords are characterized by complex terrain and large variations in surface properties. Yet, not many studies have investigated the impact of local boundary layer dynamics and their relative importance on MPCs in the fjord environment. In this work, we used a combination of ground-based remote sensing instruments, surface meteorological observations, radiosoundings, and reanalysis data to study persistent low-level MPCs at Ny-Ålesund, Svalbard, for a 2.5-year period. Methods to identify the cloud regime, surface coupling, and regional and local wind patterns were developed. We found that persistent low-level MPCs were most common with westerly winds, and the westerly clouds had a higher mean liquid (42 g m−2) and ice water path (16 g m−2) compared to those with easterly winds. The increased height and rarity of persistent MPCs with easterly free-tropospheric winds suggest the island and its orography have an influence on the studied clouds. Seasonal variation in the liquid water path was found to be minimal, although the occurrence of persistent MPCs, their height, and their ice water path all showed notable seasonal dependency. Most of the studied MPCs were decoupled from the surface (63 %–82 % of the time). The coupled clouds had 41 % higher liquid water path than the fully decoupled ones. Local winds in the fjord were related to the frequency of surface coupling, and we propose that katabatic winds from the glaciers in the vicinity of the station may cause clouds to decouple. We concluded that while the regional to large-scale wind direction was important for the persistent MPC occurrence and properties, the local-scale phenomena (local wind patterns in the fjord and surface coupling) also had an influence. Moreover, this suggests that local boundary layer processes should be described in models in order to present low-level MPC properties accurately.


2019 ◽  
Vol 12 (7) ◽  
pp. 3743-3759 ◽  
Author(s):  
Jingjing Tian ◽  
Xiquan Dong ◽  
Baike Xi ◽  
Christopher R. Williams ◽  
Peng Wu

Abstract. In this study, the liquid water path (LWP) below the melting layer in stratiform precipitation systems is retrieved, which is a combination of rain liquid water path (RLWP) and cloud liquid water path (CLWP). The retrieval algorithm uses measurements from the vertically pointing radars (VPRs) at 35 and 3 GHz operated by the US Department of Energy Atmospheric Radiation Measurement (ARM) and National Oceanic and Atmospheric Administration (NOAA) during the field campaign Midlatitude Continental Convective Clouds Experiment (MC3E). The measured radar reflectivity and mean Doppler velocity from both VPRs and spectrum width from the 35 GHz radar are utilized. With the aid of the cloud base detected by a ceilometer, the LWP in the liquid layer is retrieved under two different situations: (I) no cloud exists below the melting base, and (II) cloud exists below the melting base. In (I), LWP is primarily contributed from raindrops only, i.e., RLWP, which is estimated by analyzing the Doppler velocity differences between two VPRs. In (II), cloud particles and raindrops coexist below the melting base. The CLWP is estimated using a modified attenuation-based algorithm. Two stratiform precipitation cases (20 and 11 May 2011) during MC3E are illustrated for two situations, respectively. With a total of 13 h of samples during MC3E, statistical results show that the occurrence of cloud particles below the melting base is low (9 %); however, the mean CLWP value can be up to 0.56 kg m−2, which is much larger than the RLWP (0.10 kg m−2). When only raindrops exist below the melting base, the average RLWP value is larger (0.32 kg m−2) than the with-cloud situation. The overall mean LWP below the melting base is 0.34 kg m−2 for stratiform systems during MC3E.


2018 ◽  
Vol 11 (7) ◽  
pp. 4273-4289 ◽  
Author(s):  
Daniel P. Grosvenor ◽  
Odran Sourdeval ◽  
Robert Wood

Abstract. Droplet concentration (Nd) and liquid water path (LWP) retrievals from passive satellite retrievals of cloud optical depth (τ) and effective radius (re) usually assume the model of an idealized cloud in which the liquid water content (LWC) increases linearly between cloud base and cloud top (i.e. at a fixed fraction of the adiabatic LWC). Generally it is assumed that the retrieved re value is that at the top of the cloud. In reality, barring re retrieval biases due to cloud heterogeneity, the retrieved re is representative of smaller values that occur lower down in the cloud due to the vertical penetration of photons at the shortwave-infrared wavelengths used to retrieve re. This inconsistency will cause an overestimate of Nd and an underestimate of LWP (referred to here as the “penetration depth bias”), which this paper quantifies via a parameterization of the cloud top re as a function of the retrieved re and τ. Here we estimate the relative re underestimate for a range of idealized modelled adiabatic clouds using bispectral retrievals and plane-parallel radiative transfer. We find a tight relationship between gre=recloud top/reretrieved and τ and that a 1-D relationship approximates the modelled data well. Using this relationship we find that gre values and hence Nd and LWP biases are higher for the 2.1 µm channel re retrieval (re2.1) compared to the 3.7 µm one (re3.7). The theoretical bias in the retrieved Nd is very large for optically thin clouds, but rapidly reduces as cloud thickness increases. However, it remains above 20 % for τ<19.8 and τ<7.7 for re2.1 and re3.7, respectively. We also provide a parameterization of penetration depth in terms of the optical depth below cloud top (dτ) for which the retrieved re is likely to be representative. The magnitude of the Nd and LWP biases for climatological data sets is estimated globally using 1 year of daily MODIS (MODerate Imaging Spectroradiometer) data. Screening criteria are applied that are consistent with those required to help ensure accurate Nd and LWP retrievals. The results show that the SE Atlantic, SE Pacific and Californian stratocumulus regions produce fairly large overestimates due to the penetration depth bias with mean biases of 32–35 % for re2.1 and 15–17 % for re3.7. For the other stratocumulus regions examined the errors are smaller (24–28 % for re2.1 and 10–12 % for re3.7). Significant time variability in the percentage errors is also found with regional mean standard deviations of 19–37 % of the regional mean percentage error for re2.1 and 32–56 % for re3.7. This shows that it is important to apply a daily correction to Nd for the penetration depth error rather than a time–mean correction when examining daily data. We also examine the seasonal variation of the bias and find that the biases in the SE Atlantic, SE Pacific and Californian stratocumulus regions exhibit the most seasonality, with the largest errors occurring in the December, January and February (DJF) season. LWP biases are smaller in magnitude than those for Nd (−8 to −11 % for re2.1 and −3.6 to −6.1 % for re3.7). In reality, and especially for more heterogeneous clouds, the vertical penetration error will be combined with a number of other errors that affect both the re and τ, which are potentially larger and may compensate or enhance the bias due to vertical penetration depth. Therefore caution is required when applying the bias corrections; we suggest that they are only used for more homogeneous clouds.


2006 ◽  
Vol 19 (9) ◽  
pp. 1748-1764 ◽  
Author(s):  
Robert Wood ◽  
Dennis L. Hartmann

Abstract Liquid water path (LWP) mesoscale spatial variability in marine low cloud over the eastern subtropical oceans is examined using two months of daytime retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Terra satellite. Approximately 20 000 scenes of size 256 km × 256 km are used in the analysis. It is found that cloud fraction is strongly linked with the LWP variability in the cloudy fraction of the scene. It is shown here that in most cases LWP spatial variance is dominated by horizontal scales of 10–50 km, and increases as the variance-containing scale increases, indicating the importance of organized mesoscale cellular convection (MCC). A neural network technique is used to classify MODIS scenes by the spatial variability type (no MCC, closed MCC, open MCC, cellular but disorganized). It is shown how the different types tend to occupy distinct geographical regions and different physical regimes within the subtropics, although the results suggest considerable overlap of the large-scale meteorological conditions associated with each scene type. It is demonstrated that both the frequency of occurrence, and the variance-containing horizontal scale of the MCC increases as the marine boundary layer (MBL) depth increases. However, for the deepest MBLs, the MCC tends to be replaced by clouds containing cells but lacking organization. In regions where MCC is prevalent, a lack of sensitivity of the MCC type (open or closed) to the large-scale meteorology was found, suggesting a mechanism internal to the MBL may be important in determining MCC type. The results indicate that knowledge of the physics of MCC will be required to completely understand and predict low cloud coverage and variability in the subtropics.


2004 ◽  
Vol 17 (24) ◽  
pp. 4760-4782 ◽  
Author(s):  
Manajit Sengupta ◽  
Eugene E. Clothiaux ◽  
Thomas P. Ackerman

Abstract A 4-yr climatology (1997–2000) of warm boundary layer cloud properties is developed for the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) site. Parameters in the climatology include cloud liquid water path, cloud-base height, and surface solar flux. These parameters are retrieved from measurements produced by a dual-channel microwave radiometer, a millimeter-wave cloud radar, a micropulse lidar, a Belfort ceilometer, shortwave radiometers, and atmospheric temperature profiles amalgamated from multiple sources, including radiosondes. While no significant interannual differences are observed in the datasets, there are diurnal variations with nighttime liquid water paths consistently higher than daytime values. The summer months of June, July, and August have the lowest liquid water paths and the highest cloud-base heights. Model outputs of cloud liquid water paths from the European Centre for Medium-Range Weather Forecasts (ECMWF) model and the Eta Model for 104 model output location time series (MOLTS) stations in the environs of the SGP central facility are compared to observations. The ECMWF and MOLTS median liquid water paths are greater than 3 times the observed values. The MOLTS data show lower liquid water paths in summer, which is consistent with observations, while the ECMWF data exhibit the opposite tendency. A parameterization of normalized cloud forcing that requires only cloud liquid water path and solar zenith angle is developed from the observations. The parameterization, which has a correlation coefficient of 0.81 with the observations, provides estimates of surface solar flux that are comparable to values obtained from explicit radiative transfer calculations based on plane-parallel theory. This parameterization is used to estimate the impact on the surface solar flux of differences in the liquid water paths between models and observations. Overall, there is a low bias of 50% in modeled normalized cloud forcing resulting from the excess liquid water paths in the two models. Splitting the liquid water path into two components, cloud thickness and liquid water content, shows that the higher liquid water paths in the model outputs are primarily a result of higher liquid water contents, although cloud thickness may a play a role, especially for the ECMWF model results.


2020 ◽  
Vol 77 (9) ◽  
pp. 3119-3137
Author(s):  
Marcin J. Kurowski ◽  
Wojciech W. Grabowski ◽  
Kay Suselj ◽  
João Teixeira

Abstract Idealized large-eddy simulation (LES) is a basic tool for studying three-dimensional turbulence in the planetary boundary layer. LES is capable of providing benchmark solutions for parameterization development efforts. However, real small-scale atmospheric flows develop in heterogeneous and transient environments with locally varying vertical motions inherent to open multiscale interactive dynamical systems. These variations are often too subtle to detect them by state-of-the-art remote and in situ measurements, and are typically excluded from idealized simulations. The present study addresses the impact of weak [i.e., O(10−6) s−1] short-lived low-level large-scale convergence/divergence perturbations on continental shallow convection. The results show a strong response of shallow nonprecipitating convection to the applied weak large-scale dynamical forcing. Evolutions of CAPE, mean liquid water path, and cloud-top heights are significantly affected by the imposed convergence/divergence. In contrast, evolving cloud-base properties, such as the area coverage and mass flux, are only weakly affected. To contrast those impacts with microphysical sensitivity, the baseline simulations are perturbed assuming different observationally based cloud droplet number concentrations and thus different rainfall. For the tested range of microphysical perturbations, the imposed convergence/divergence provides significantly larger impact than changes in the cloud microphysics. Simulation results presented here provide a stringent test for convection parameterizations, especially important for large-scale models progressing toward resolving some nonhydrostatic effects.


2010 ◽  
Vol 10 (21) ◽  
pp. 10541-10559 ◽  
Author(s):  
S. J. Abel ◽  
D. N. Walters ◽  
G. Allen

Abstract. Observations in the subtropical southeast Pacific obtained during the VOCALS-REx field experiment are used to evaluate the representation of stratocumulus cloud in the Met Office forecast model and to identify key areas where model biases exist. Marked variations in the large scale structure of the cloud field were observed during the experiment on both day-to-day and on diurnal timescales. In the remote maritime region the model is shown to have a good representation of synoptically induced variability in both cloud cover and marine boundary layer depth. Satellite observations show a strong diurnal cycle in cloud fraction and liquid water path in the stratocumulus with enhanced clearances of the cloud deck along the Chilean and Peruvian coasts on certain days. The model accurately simulates the phase of the diurnal cycle but is unable to capture the coastal clearing of cloud. Observations along the 20° S latitude line show a gradual increase in the depth of the boundary layer away from the coast. This trend is well captured by the model (typical low bias of 200 m) although significant errors exist at the coast where the model marine boundary layer is too shallow and moist. Drizzle in the model responds to changes in liquid water path in a manner that is consistent with previous ship-borne observations in the region although the intensity of this drizzle is likely to be too high, particularly in the more polluted coastal region where higher cloud droplet number concentrations are typical. Another mode of variability in the cloud field that the model is unable to capture are regions of pockets of open cellular convection embedded in the overcast stratocumulus deck and an example of such a feature that was sampled during VOCALS-REx is shown.


Sign in / Sign up

Export Citation Format

Share Document