scholarly journals Quantifying the large-scale electrification equilibrium effects in dust storms using field observations at Qingtu Lake Observatory

2018 ◽  
Author(s):  
Huan Zhang ◽  
Xiaojing Zheng

Abstract. Dust/sand electrification, which is a ubiquitous phenomenon in dust events, has a potentially dramatic effect on dust/sand lifting and transport processes. However, the effect of such electrification is still largely unclear, mainly due to its complexity and sparse observations. Here, we conducted an extensive observational analysis involving mild and severe dust storms with minimum visibility, ranging from ~ 0.09 to 0.93 km, to assess the electrical properties of airborne dust particles in dust storms. The space charge density has been estimated indirectly based on Gauss’s law. Using the wavelet coherence analysis that is a method for evaluating the correlations between two non-stationary time series in the time-frequency domain, we found that the space charge density and dust concentration were significantly correlated over the 10 min timescales that is on the order of the typical integral time scale of atmospheric turbulence. We further presented a simple linear regression (SLR) model to quantify such large timescale correlations and found that there was a significant linear relationship between space charge density and dust concentration at given ambient temperature and relative humidity (RH), suggesting that the estimated mean charge-to-mass ratio of dust particles was expected to remain constant (termed as the equilibrium value μ*). In addition, the influences of ambient temperature and RH on μ* were evaluated by a multiple linear regression (MLR) model, showing that the μ* is nonlinearly related to environmental factors. The present study provides observational evidence for the environmental-dependent electrification equilibrium effects in dust storms. This finding may reduce challenges in future quantifications of dust electrification, as it is possible to exclude effects, such as the particles’ collisional dynamics, on dust electrification.

2018 ◽  
Vol 18 (23) ◽  
pp. 17087-17097 ◽  
Author(s):  
Huan Zhang ◽  
Xiaojing Zheng

Abstract. Dust and sand electrification, which is a ubiquitous phenomenon in dust events, has a potentially dramatic effect on dust and sand lifting and transport processes. However, the effect of such electrification is still largely unclear, mainly due to its complexity and sparse observations. Here, we conducted an extensive observational analysis involving mild and severe dust storms with minimum visibility, ranging from ∼0.09 to 0.93 km, to assess the electrical properties of airborne dust particles in dust storms. The space charge density has been estimated indirectly based on Gauss's law. Using the wavelet coherence analysis that is a method for evaluating the correlations between two non-stationary time series in the time–frequency domain, we found that the space charge density and dust concentration were significantly correlated over the 10 min timescales (on the order of the typical integral timescale of atmospheric turbulence). We further presented a simple linear regression (SLR) model to quantify such large timescale correlations and found that there was a significant linear relationship between space charge density and dust concentration at given ambient temperature and relative humidity (RH), suggesting that the estimated mean charge-to-mass ratio of dust particles was expected to remain constant (termed as the equilibrium value μ∗). In addition, the influences of ambient temperature and RH on μ∗ were evaluated by a multiple linear regression (MLR) model, showing that the μ∗ is nonlinearly related to environmental factors. The present study provides observational evidence for the environmental-dependent electrification equilibrium effects in dust storms. This finding may reduce challenges in future quantifications of dust electrification, as it is possible to exclude effects, such as the particles' collisional dynamics, on dust electrification.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Huan Zhang ◽  
You-He Zhou

Abstract While the electrification of dust storms is known to substantially affect the lifting and transport of dust particles, the electrical structure of dust storms and its underlying charge separation mechanisms are largely unclear. Here we present an inversion method, which is based on the Tikhonov regularization for inverting the electric field data collected in a near-ground observation array, to reconstruct the space-charge density and electric field in dust storms. After verifying the stability, robustness, and accuracy of the inversion procedure, we find that the reconstructed space-charge density exhibits a universal three-dimensional mosaic pattern of oppositely charged regions, probably due to the charge separation by turbulence. Furthermore, there are significant linear relationships between the reconstructed space-charge densities and measured PM10 dust concentrations at each measurement point, suggesting a multi-point large-scale charge equilibrium phenomenon in dust storms. These findings refine our understanding of charge separation mechanisms and particle transport in dust storms.


2009 ◽  
Vol 471 (1-3) ◽  
pp. 174-177 ◽  
Author(s):  
S. Jenkins ◽  
P.W. Ayers ◽  
S.R. Kirk ◽  
P. Mori-Sánchez ◽  
A. Martín Pendás

1996 ◽  
Vol 14 (10) ◽  
pp. 1095-1101 ◽  
Author(s):  
E. A. Mareev ◽  
S. Israelsson ◽  
E. Knudsen ◽  
A. V. Kalinin ◽  
M. M. Novozhenov

Abstract. The outdoor experiments, using a metallic grid above the ground surface, have yielded well-defined vertical profiles of the space-charge density. The profiles showed strong evidence for the existence of an electrode effect, which could be named the artificial electrode effect and can serve as a very useful and well-controlled model for the study of atmospheric electric processes in the atmospheric surface layer. The build-up or break-down of an electrode-effect layer occurred in a time of the order of 10 s under the experimental conditions realized. The artificially generated electrode effect is dependent on the electrical field strength supplied, wind speed, turbulent mixing and ion mobilities. Wind speed and ion mobility seem to be the dominant factors, defining space-charge density profiles. A theoretical model for the artificial electrode effect has been developed, taking into account turbulent mixing of charged particles in the air flow with the logarithmic profile of the wind velocity. The numerical analysis of the boundary value problem for the two-dimensional equations for the light ion concentrations has been performed. The model presented shows a qualitative agreement of calculated space-charge profiles with measured ones, and explains the dependence of the artificial electrode effect on the dominant control parameters. The limiting conditions for the developed theory are discussed.


Sign in / Sign up

Export Citation Format

Share Document