scholarly journals A satellite-based estimate of aerosol-cloud microphysical effects over the Arctic Ocean

Author(s):  
Lauren M. Zamora ◽  
Ralph A. Kahn ◽  
Klaus B. Huebert ◽  
Andreas Stohl ◽  
Sabine Eckhardt

Abstract. Climate predictions for the rapidly changing Arctic are highly uncertain, largely due to a poor understanding of the processes driving cloud properties. In particular, cloud fraction (CF) and cloud phase (CP) have major impacts on energy budgets, but are poorly represented in most models, often because of uncertainties in aerosol-cloud interactions. Here we use over 10 million satellite observations coupled with aerosol transport model simulations to quantify regional-scale microphysical effects of aerosols on CF and CP over the Arctic Ocean during polar night, when direct and semi-direct aerosol effects are minimal. Combustion aerosols over sea ice are associated with very large (~ 25 W m−2) differences in longwave cloud radiative effects at the sea ice surface. However, co-varying meteorological changes on factors such as CF likely explain much of this signal – for example, explaining up to 91 % of the CF differences between the full dataset and the clean-condition subset. After normalizing for meteorological regime, aerosol microphysical effects have small but significant regional-scale impacts on CF, CP, and precipitation frequency. These effects indicate that dominant aerosol-cloud microphysical mechanisms are related to the relative fraction of liquid-containing clouds, with implications for a warming Arctic.

2018 ◽  
Vol 18 (20) ◽  
pp. 14949-14964 ◽  
Author(s):  
Lauren M. Zamora ◽  
Ralph A. Kahn ◽  
Klaus B. Huebert ◽  
Andreas Stohl ◽  
Sabine Eckhardt

Abstract. Climate predictions for the rapidly changing Arctic are highly uncertain, largely due to a poor understanding of the processes driving cloud properties. In particular, cloud fraction (CF) and cloud phase (CP) have major impacts on energy budgets, but are poorly represented in most models, often because of uncertainties in aerosol–cloud interactions. Here, we use over 10 million satellite observations coupled with aerosol transport model simulations to quantify large-scale microphysical effects of aerosols on CF and CP over the Arctic Ocean during polar night, when direct and semi-direct aerosol effects are minimal. Combustion aerosols over sea ice are associated with very large (∼10 W m−2) differences in longwave cloud radiative effects at the sea ice surface. However, co-varying meteorological changes on factors such as CF likely explain the majority of this signal. For example, combustion aerosols explain at most 40 % of the CF differences between the full dataset and the clean-condition subset, compared to between 57 % and 91 % of the differences that can be predicted by co-varying meteorology. After normalizing for meteorological regime, aerosol microphysical effects have small but significant impacts on CF, CP, and precipitation frequency on an Arctic-wide scale. These effects indicate that dominant aerosol–cloud microphysical mechanisms are related to the relative fraction of liquid-containing clouds, with implications for a warming Arctic.


2017 ◽  
Vol 17 (12) ◽  
pp. 7311-7332 ◽  
Author(s):  
Lauren M. Zamora ◽  
Ralph A. Kahn ◽  
Sabine Eckhardt ◽  
Allison McComiskey ◽  
Patricia Sawamura ◽  
...  

Abstract. Aerosol indirect effects have potentially large impacts on the Arctic Ocean surface energy budget, but model estimates of regional-scale aerosol indirect effects are highly uncertain and poorly validated by observations. Here we demonstrate a new way to quantitatively estimate aerosol indirect effects on a regional scale from remote sensing observations. In this study, we focus on nighttime, optically thin, predominantly liquid clouds. The method is based on differences in cloud physical and microphysical characteristics in carefully selected clean, average, and aerosol-impacted conditions. The cloud subset of focus covers just ∼ 5 % of cloudy Arctic Ocean regions, warming the Arctic Ocean surface by ∼ 1–1.4 W m−2 regionally during polar night. However, within this cloud subset, aerosol and cloud conditions can be determined with high confidence using CALIPSO and CloudSat data and model output. This cloud subset is generally susceptible to aerosols, with a polar nighttime estimated maximum regionally integrated indirect cooling effect of ∼ −0.11 W m−2 at the Arctic sea ice surface (∼ 8 % of the clean background cloud effect), excluding cloud fraction changes. Aerosol presence is related to reduced precipitation, cloud thickness, and radar reflectivity, and in some cases, an increased likelihood of cloud presence in the liquid phase. These observations are inconsistent with a glaciation indirect effect and are consistent with either a deactivation effect or less-efficient secondary ice formation related to smaller liquid cloud droplets. However, this cloud subset shows large differences in surface and meteorological forcing in shallow and higher-altitude clouds and between sea ice and open-ocean regions. For example, optically thin, predominantly liquid clouds are much more likely to overlay another cloud over the open ocean, which may reduce aerosol indirect effects on the surface. Also, shallow clouds over open ocean do not appear to respond to aerosols as strongly as clouds over stratified sea ice environments, indicating a larger influence of meteorological forcing over aerosol microphysics in these types of clouds over the rapidly changing Arctic Ocean.


Author(s):  
Jens Matthiessen ◽  
Jochen Knies ◽  
Christoph Vogt ◽  
Ruediger Stein

The Pliocene is important in the geological evolution of the high northern latitudes. It marks the transition from restricted local- to extensive regional-scale glaciations on the circum-Arctic continents between 3.6 and 2.4 Ma. Since the Arctic Ocean is an almost land-locked basin, tectonic activity and sea-level fluctuations controlled the geometry of ocean gateways and continental drainage systems, and exerted a major influence on the formation of continental ice sheets, the distribution of river run-off, and the circulation and water mass characteristics in the Arctic Ocean. The effect of a water mass exchange restricted to the Bering and Fram Straits on the oceanography is unknown, but modelling experiments suggest that this must have influenced the Atlantic meridional overturning circulation. Cold conditions associated with perennial sea-ice cover might have prevailed in the central Arctic Ocean throughout the Pliocene, whereas colder periods alternated with warmer seasonally ice-free periods in the marginal areas. The most pronounced oceanographic change occurred in the Mid-Pliocene when the circulation through the Bering Strait reversed and low-salinity waters increasingly flowed from the North Pacific into the Arctic Ocean. The excess freshwater supply might have facilitated sea-ice formation and contributed to a decrease in the Atlantic overturning circulation.


2018 ◽  
Vol 31 (20) ◽  
pp. 8441-8462 ◽  
Author(s):  
Linette N. Boisvert ◽  
Melinda A. Webster ◽  
Alek A. Petty ◽  
Thorsten Markus ◽  
David H. Bromwich ◽  
...  

Precipitation over the Arctic Ocean has a significant impact on the basin-scale freshwater and energy budgets but is one of the most poorly constrained variables in atmospheric reanalyses. Precipitation controls the snow cover on sea ice, which impedes the exchange of energy between the ocean and atmosphere, inhibiting sea ice growth. Thus, accurate precipitation amounts are needed to inform sea ice modeling, especially for the production of thickness estimates from satellite altimetry freeboard data. However, obtaining a quantitative estimate of the precipitation distribution in the Arctic is notoriously difficult because of a number of factors, including a lack of reliable, long-term in situ observations; difficulties in remote sensing over sea ice; and model biases in temperature and moisture fields and associated uncertainty of modeled cloud microphysical processes in the polar regions. Here, we compare precipitation estimates over the Arctic Ocean from eight widely used atmospheric reanalyses over the period 2000–16 (nominally the “new Arctic”). We find that the magnitude, frequency, and phase of precipitation vary drastically, although interannual variability is similar. Reanalysis-derived precipitation does not increase with time as expected; however, an increasing trend of higher fractions of liquid precipitation (rainfall) is found. When compared with drifting ice mass balance buoys, three reanalyses (ERA-Interim, MERRA, and NCEP R2) produce realistic magnitudes and temporal agreement with observed precipitation events, while two products [MERRA, version 2 (MERRA-2), and CFSR] show large, implausible magnitudes in precipitation events. All the reanalyses tend to produce overly frequent Arctic precipitation. Future work needs to be undertaken to determine the specific factors in reanalyses that contribute to these discrepancies in the new Arctic.


2017 ◽  
Vol 17 (13) ◽  
pp. 8101-8128 ◽  
Author(s):  
Eyal Freud ◽  
Radovan Krejci ◽  
Peter Tunved ◽  
Richard Leaitch ◽  
Quynh T. Nguyen ◽  
...  

Abstract. The Arctic environment has an amplified response to global climatic change. It is sensitive to human activities that mostly take place elsewhere. For this study, a multi-year set of observed aerosol number size distributions in the diameter range of 10 to 500 nm from five sites around the Arctic Ocean (Alert, Villum Research Station – Station Nord, Zeppelin, Tiksi and Barrow) was assembled and analysed.A cluster analysis of the aerosol number size distributions revealed four distinct distributions. Together with Lagrangian air parcel back-trajectories, they were used to link the observed aerosol number size distributions with a variety of transport regimes. This analysis yields insight into aerosol dynamics, transport and removal processes, on both an intra- and an inter-monthly scale. For instance, the relative occurrence of aerosol number size distributions that indicate new particle formation (NPF) event is near zero during the dark months, increases gradually to  ∼ 40 % from spring to summer, and then collapses in autumn. Also, the likelihood of Arctic haze aerosols is minimal in summer and peaks in April at all sites.The residence time of accumulation-mode particles in the Arctic troposphere is typically long enough to allow tracking them back to their source regions. Air flow that passes at low altitude over central Siberia and western Russia is associated with relatively high concentrations of accumulation-mode particles (Nacc) at all five sites – often above 150 cm−3. There are also indications of air descending into the Arctic boundary layer after transport from lower latitudes.The analysis of the back-trajectories together with the meteorological fields along them indicates that the main driver of the Arctic annual cycle of Nacc, on the larger scale, is when atmospheric transport covers the source regions for these particles in the 10-day period preceding the observations in the Arctic. The scavenging of these particles by precipitation is shown to be important on a regional scale and it is most active in summer. Cloud processing is an additional factor that enhances the Nacc annual cycle.There are some consistent differences between the sites that are beyond the year-to-year variability. They are the result of differences in the proximity to the aerosol source regions and to the Arctic Ocean sea-ice edge, as well as in the exposure to free-tropospheric air and in precipitation patterns – to mention a few. Hence, for most purposes, aerosol observations from a single Arctic site cannot represent the entire Arctic region. Therefore, the results presented here are a powerful observational benchmark for evaluation of detailed climate and air chemistry modelling studies of aerosols throughout the vast Arctic region.


2008 ◽  
Vol 21 (5) ◽  
pp. 866-882 ◽  
Author(s):  
Irina V. Gorodetskaya ◽  
L-Bruno Tremblay ◽  
Beate Liepert ◽  
Mark A. Cane ◽  
Richard I. Cullather

Abstract The impact of Arctic sea ice concentrations, surface albedo, cloud fraction, and cloud ice and liquid water paths on the surface shortwave (SW) radiation budget is analyzed in the twentieth-century simulations of three coupled models participating in the Intergovernmental Panel on Climate Change Fourth Assessment Report. The models are the Goddard Institute for Space Studies Model E-R (GISS-ER), the Met Office Third Hadley Centre Coupled Ocean–Atmosphere GCM (UKMO HadCM3), and the National Center for Atmosphere Research Community Climate System Model, version 3 (NCAR CCSM3). In agreement with observations, the models all have high Arctic mean cloud fractions in summer; however, large differences are found in the cloud ice and liquid water contents. The simulated Arctic clouds of CCSM3 have the highest liquid water content, greatly exceeding the values observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) campaign. Both GISS-ER and HadCM3 lack liquid water and have excessive ice amounts in Arctic clouds compared to SHEBA observations. In CCSM3, the high surface albedo and strong cloud SW radiative forcing both significantly decrease the amount of SW radiation absorbed by the Arctic Ocean surface during the summer. In the GISS-ER and HadCM3 models, the surface and cloud effects compensate one another: GISS-ER has both a higher summer surface albedo and a larger surface incoming SW flux when compared to HadCM3. Because of the differences in the models’ cloud and surface properties, the Arctic Ocean surface gains about 20% and 40% more solar energy during the melt period in the GISS-ER and HadCM3 models, respectively, compared to CCSM3. In twenty-first-century climate runs, discrepancies in the surface net SW flux partly explain the range in the models’ sea ice area changes. Substantial decrease in sea ice area simulated during the twenty-first century in CCSM3 is associated with a large drop in surface albedo that is only partly compensated by increased cloud SW forcing. In this model, an initially high cloud liquid water content reduces the effect of the increase in cloud fraction and cloud liquid water on the cloud optical thickness, limiting the ability of clouds to compensate for the large surface albedo decrease. In HadCM3 and GISS-ER, the compensation of the surface albedo and cloud SW forcing results in negligible changes in the net SW flux and is one of the factors explaining moderate future sea ice area trends. Thus, model representations of cloud properties for today’s climate determine the ability of clouds to compensate for the effect of surface albedo decrease on the future shortwave radiative budget of the Arctic Ocean and, as a consequence, the sea ice mass balance.


2015 ◽  
Vol 28 (10) ◽  
pp. 4027-4033 ◽  
Author(s):  
Doo-Sun R. Park ◽  
Sukyoung Lee ◽  
Steven B. Feldstein

Abstract Wintertime Arctic sea ice extent has been declining since the late twentieth century, particularly over the Atlantic sector that encompasses the Barents–Kara Seas and Baffin Bay. This sea ice decline is attributable to various Arctic environmental changes, such as enhanced downward infrared (IR) radiation, preseason sea ice reduction, enhanced inflow of warm Atlantic water into the Arctic Ocean, and sea ice export. However, their relative contributions are uncertain. Utilizing ERA-Interim and satellite-based data, it is shown here that a positive trend of downward IR radiation accounts for nearly half of the sea ice concentration (SIC) decline during the 1979–2011 winter over the Atlantic sector. Furthermore, the study shows that the Arctic downward IR radiation increase is driven by horizontal atmospheric water flux and warm air advection into the Arctic, not by evaporation from the Arctic Ocean. These findings suggest that most of the winter SIC trends can be attributed to changes in the large-scale atmospheric circulations.


Sign in / Sign up

Export Citation Format

Share Document