scholarly journals Substantial changes of gaseous pollutants and chemical compositions in fine particles in North China Plain during COVID-19 lockdown period: anthropogenic vs meteorological influences

2021 ◽  
Author(s):  
Rui Li ◽  
Yilong Zhao ◽  
Hongbo Fu

Abstract. The rapid response to COVID-19 pandemic led to the unprecedented decreases of economic activities, thereby reducing the pollutant emissions. A random forest (RF) model was applied to determine the respective contributions of meteorology and anthropogenic emissions to the changes of air quality. The result suggested the strict lockdown measures significantly decreased primary components such as Cr (−201 %) and Fe (−154 %) in PM2.5, whereas the higher relative humidity (RH) and NH3 level, and the lower air temperature (T) enhanced the production of secondary aerosol including SO42− (47.2 %), NO3− (38.6 %), and NH4+ (22.7 %). Positive matrix factorization (PMF) result suggested that the contribution ratios of secondary formation (SF), industrial process (IP), biomass burning (BB), coal combustion (CC), and road dust (RD) changed from 35.2 %, 28.9 %, 19.4 %, 11.8 %, and 4.75 % before COVID-19 outbreak to 42.7 %, 20.5 %, 19.45 %, 9.80 %, and 7.56 %, respectively. The rapid increase of the contribution ratio derived from SF to PM2.5 implied the intermittent haze events during COVID-19 period were characterized with secondary aerosol pollution, which was mainly contributed by the unfavorable meteorological conditions and high NH3 level.

2021 ◽  
Vol 21 (11) ◽  
pp. 8677-8692
Author(s):  
Rui Li ◽  
Yilong Zhao ◽  
Hongbo Fu ◽  
Jianmin Chen ◽  
Meng Peng ◽  
...  

Abstract. The rapid response to the COVID-19 pandemic led to unprecedented decreases in economic activities, thereby reducing the pollutant emissions. A random forest (RF) model was applied to determine the respective contributions of meteorology and anthropogenic emissions to the changes in air quality. The result suggested that the strict lockdown measures significantly decreased primary components such as Cr (−67 %) and Fe (−61 %) in PM2.5 (p<0.01), whereas the higher relative humidity (RH) and NH3 level and the lower air temperature (T) remarkably enhanced the production of secondary aerosol, including SO42- (29 %), NO3- (29 %), and NH4+ (21 %) (p<0.05). The positive matrix factorization (PMF) result suggested that the contribution ratios of secondary formation (SF), industrial process (IP), biomass burning (BB), coal combustion (CC), and road dust (RD) changed from 36 %, 27 %, 21 %, 12 %, and 4 % before the COVID-19 outbreak to 44 %, 20 %, 20 %, 9 %, and 7 %, respectively. The rapid increase in the contribution ratio derived from SF to PM2.5 implied that the intermittent haze events during the COVID-19 period were characterized by secondary aerosol pollution, which was mainly contributed by the unfavorable meteorological conditions and high NH3 level.


Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 292 ◽  
Author(s):  
Minhan Park ◽  
Yujue Wang ◽  
Jihyo Chong ◽  
Haebum Lee ◽  
Jiho Jang ◽  
...  

We performed simultaneous measurements of chemical compositions of fine particles in Beijing, China and Gwangju, Korea to better understand their sources during winter haze period. We identified PM2.5 events in Beijing, possibly caused by a combination of multiple primary combustion sources (biomass burning, coal burning, and vehicle emissions) and secondary aerosol formation under stagnant conditions and/or dust sources under high wind speeds. During the PM2.5 events in Gwangju, the contribution of biomass burning and secondary formation of nitrate and organics to the fine particles content significantly increased under stagnant conditions. We commonly observed the increases of nitrogen-containing organic compounds and biomass burning inorganic (K+) and organic (levoglucosan) markers, suggesting the importance of biomass burning sources during the winter haze events (except dust event cases) at both sites. Pb isotope ratios indicated that the fraction of Pb originated from possibly industry and coal combustion sources increased during the PM2.5 events in Gwangju, relative to nonevent days.


2009 ◽  
Vol 9 (6) ◽  
pp. 23955-23986 ◽  
Author(s):  
S. Guo ◽  
M. Hu ◽  
Z. B. Wang ◽  
J. Slanina ◽  
Y. L. Zhao

Abstract. To characterize aerosol pollution in Beijing, size-resolved aerosols were collected by MOUDIs during CAREBEIJING-2006 field campaign at Peking University (urban site) and Yufa (upwind rural site). Fine particle concentrations (PM1.8 by MOUDI) were 99.8±77.4 μg/m3 and 78.2±58.4 μg/m3, with PM1.8/PM10 ratios of 0.64±0.08 and 0.76±0.08 at PKU and Yufa, respectively, and secondary compounds accounted for more than 50% in fine particles. PMF model was used to resolve the particle modes. Three modes were resolved at Yufa, representing condensation, droplet and coarse mode. However, one more droplet mode with bigger size was resolved, which was considered probably from regional transport. Condensation mode accounted for 10%–60% of the total mass at both sites, indicating it must be taken into account in summer. The formation of sulfate was mainly attributed to in-cloud or aerosol droplet process (PKU 80%, Yufa 70%) and gas condensation process (PKU 14%, Yufa 22%). According to the thermodynamic instability of NH4NO3, size distributions of nitrate were classified as three categories by RH. The existence of Ca(NO3)2 in droplet mode indicated the reaction of HNO3 with crustal particles was also important in fine particles. Linear regression gave a rough estimation that 69% of the PM10 and 87% of the PM1.8 at PKU were regional contributions. Sulfate, ammonium and oxalate were formed regionally, with the regional contributions of 90%, 87% and 95% to PM1.8. Nitrate formation was local dominant. In summary regional secondary formation led to aerosol pollution in the summer of Beijing.


2010 ◽  
Vol 10 (3) ◽  
pp. 947-959 ◽  
Author(s):  
S. Guo ◽  
M. Hu ◽  
Z. B. Wang ◽  
J. Slanina ◽  
Y. L. Zhao

Abstract. To characterize aerosol pollution in Beijing, size-resolved aerosols were collected by MOUDIs during CAREBEIJING-2006 field campaign at Peking University (urban site) and Yufa (upwind rural site). Fine particle concentrations (PM1.8 by MOUDI) were 99.8±77.4 μg/m3 and 78.2±58.4 μg/m3, with PM1.8/PM10 ratios of 0.64±0.08 and 0.76±0.08 at PKU and Yufa, respectively, and secondary compounds accounted for more than 50% in fine particles. PMF model analysis was used to resolve the particle modes. Three modes were resolved at Yufa, representing condensation, droplet and coarse mode. However, one more droplet mode with bigger size was resolved, which was considered probably from regional transport. Condensation mode accounted for 10%–60% of the total mass at both sites, indicating that the gas-to-particle condensation process was important in summer. The formation of sulfate was mainly attributed to in-cloud or aerosol droplet process (PKU 80%, Yufa 70%) and gas condensation process (PKU 14%, Yufa 22%). According to the thermodynamic instability of NH4NO3, size distributions of nitrate were classified as three categories by RH. The existence of Ca(NO3)2 in droplet mode indicated the reaction of HNO3 with crustal particles was also important in fine particles. A rough estimation was given that 69% of the PM10 and 87% of the PM1.8 in Beijing urban were regional contributions. Sulfate, ammonium and oxalate were formed regionally, with the regional contributions of 90%, 87% and 95% to PM1.8. Nitrate formation was local dominant. In summary regional secondary formation led to aerosol pollution in the summer of Beijing.


2017 ◽  
Vol 17 (16) ◽  
pp. 9979-10000 ◽  
Author(s):  
Wei Hu ◽  
Min Hu ◽  
Wei-Wei Hu ◽  
Jing Zheng ◽  
Chen Chen ◽  
...  

Abstract. A severe regional haze problem in the megacity Beijing and surrounding areas, caused by fast formation and growth of fine particles, has attracted much attention in recent years. In order to investigate the secondary formation and aging process of urban aerosols, four intensive campaigns were conducted in four seasons between March 2012 and March 2013 at an urban site in Beijing (116.31° E, 37.99° N). An Aerodyne high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) was deployed to measure non-refractory chemical components of submicron particulate matter (NR-PM1). The average mass concentrations of PM1 (NR-PM1+black carbon) were 45.1 ± 45.8, 37.5 ± 31.0, 41.3 ± 42.7, and 81.7 ± 72.4 µg m−3 in spring, summer, autumn, and winter, respectively. Organic aerosol (OA) was the most abundant component in PM1, accounting for 31, 33, 44, and 36 % seasonally, and secondary inorganic aerosol (SNA, sum of sulfate, nitrate, and ammonium) accounted for 59, 57, 43, and 55 % of PM1 correspondingly. Based on the application of positive matrix factorization (PMF), the sources of OA were obtained, including the primary ones of hydrocarbon-like (HOA), cooking (COA), biomass burning OA (BBOA) and coal combustion OA (CCOA), and secondary component oxygenated OA (OOA). OOA, which can be split into more-oxidized (MO-OOA) and less-oxidized OOA (LO-OOA), accounted for 49, 69, 47, and 50 % in four seasons, respectively. Totally, the fraction of secondary components (OOA+SNA) contributed about 60–80 % to PM1, suggesting that secondary formation played an important role in the PM pollution in Beijing, and primary sources were also non-negligible. The evolution process of OA in different seasons was investigated with multiple metrics and tools. The average carbon oxidation states and other metrics show that the oxidation state of OA was the highest in summer, probably due to both strong photochemical and aqueous-phase oxidations. It was indicated by the good correlations (r = 0.53–0.75, p < 0.01) between LO-OOA and odd oxygen (Ox =  O3 + NO2), and between MO-OOA and liquid water content in aerosols. BBOA was resolved in spring and autumn, influenced by agricultural biomass burning (e.g., field preparation burnings, straw burning after the harvest). CCOA was only identified in winter due to domestic heating. These results signified that the comprehensive management for biomass burning and coal combustion emissions is needed. High concentrations of chemical components in PM1 in Beijing, especially in winter or in adverse meteorological conditions, suggest that further strengthening the regional emission control of primary particulate and precursors of secondary species is expected.


2017 ◽  
Author(s):  
Wei Hu ◽  
Min Hu ◽  
Wei-Wei Hu ◽  
Jing Zheng ◽  
Chen Chen ◽  
...  

Abstract. Severe regional haze problem in the megacity Beijing and surrounding areas, caused by fast formation and growth of fine particles, has attracted much attention in recent years. In order to investigate the secondary formation and aging process of urban aerosols, four intensive campaigns were conducted in four seasons between March 2012 and March 2013 at an urban site in Beijing (116.31° E, 37.99° N). An Aerodyne high resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) and other relevant instrumentations for gaseous and particulate pollutants were deployed. The average mass concentrations of submicron particulate matter (PM1) were 45.1±45.8, 37.5±31.0, 41.3±42.7, and 81.7±72.4 μg m−3 in spring, summer, autumn and winter, respectively. Organic aerosol (OA) was the most abundant component in PM1, accounting for 31, 33, 44 and 36 % seasonally, and secondary inorganic aerosol (SNA, sum of sulfate, nitrate and ammonium) accounted for 59, 57, 43, and 55 % of PM1 correspondingly. Based on the application of positive matrix factorization (PMF), the sources of OA were obtained, including the primary ones of hydrocarbon-like (HOA), cooking (COA), biomass burning OA (BBOA) and coal combustion OA (CCOA), and secondary component oxygenated OA (OOA). OOA, usually composed of more-oxidized (MO-OOA) and less-oxidized OOA (LO-OOA), accounted for 63, 69, 47 and 50 % in four seasons, respectively. Totally, the fraction of secondary components (OOA+SNA) contributed about 60–80 % to PM1, suggesting that secondary formation played an important role in the PM pollution in Beijing, and primary sources were also non-negligible. The evolution process of OA in different seasons was investigated with multiple metrics and tools. The average carbon oxidation states and other metrics show that the oxidation state of OA was the highest in summer, probably due to both strong photochemical and aqueous-phase oxidations. BBOA and CCOA were only resolved in autumn and winter, respectively, consistent with the agricultural activities (e.g., straw burning after the harvest in suburban areas) in autumn and domestic heating in winter, signifying that the comprehensive management for the emissions from biomass burning and coal combustion are needed. High concentrations of chemical components in PM1 in Beijing, especially in winter or in adverse meteorological conditions, suggest that further strengthening the regional emission control of primary particulate and precursors of secondary species is expected.


2021 ◽  
Author(s):  
Zhaomin Yang ◽  
Li Xu ◽  
Narcisse T. Tsona ◽  
Jianlong Li ◽  
Xin Luo ◽  
...  

Abstract. Although atmospheric SO2 and NH3 levels can affect secondary aerosol formation, the influenced extent of their impact and their detailed driving mechanisms are not well understood. The focus of the present study is to examine the chemical compositions and formation mechanisms of secondary organic aerosols (SOA) from 1,2,4-trimethylbenzene (TMB) photooxidation influenced by SO2 and/or NH3. Here, we showed that SO2 emission could considerably enhance aerosol particle formation due to SO2-induced sulfates generation and acid-catalyzed heterogeneous reaction. Orbitrap mass spectrometry (MS) measurements revealed the generation of not only typical TMB products but also hitherto unidentified organosulfates (OSs) in SO2-added experiments. The OSs designated as unknown origin in earlier field measurements were also detected in TMB SOA, indicating that atmospheric OSs might be also originated from TMB photooxidation. For NH3-involved experiments, results demonstrated a positive correlation between NH3 levels and particle volume as well as number concentrations. The effects of NH3 on SOA composition was slight under SO2-free conditions but stronger in the presence of SO2. A series of multifunctional products with carbonyl, alcohols, and nitrate functional groups were tentatively characterized in NH3-involved experiments based on infrared spectra and HRMS analysis. Plausible formation pathways were proposed for detected products in the particle-phase. The volatility distributions of products, estimated using parameterization methods, suggested that the detected products gradually condense onto the nucleation particles to contribute to aerosol formation and growth. Our results suggest that strict control of SO2 and NH3 emissions might remarkably reduce organosulfates and secondary aerosol burden in the atmosphere. Updating the aromatic oxidation mechanism in models could result in more accurate treatment of particles formation for urban regions with considerable SO2, NH3, and aromatics emissions.


2021 ◽  
Vol 247 ◽  
pp. 118201
Author(s):  
Hao Wu ◽  
Tijian Wang ◽  
Qin'geng Wang ◽  
Yang Cao ◽  
Yawei Qu ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 449
Author(s):  
Lili Li ◽  
Kun Wang ◽  
Zhijian Sun ◽  
Weiye Wang ◽  
Qingliang Zhao ◽  
...  

Road dust is one of the primary sources of particulate matter which has implications for air quality, climate and health. With the aim of characterizing the emissions, in this study, a bottom-up approach of county level emission inventory from paved road dust based on field investigation was developed. An inventory of high-resolution paved road dust (PRD) emissions by monthly and spatial allocation at 1 km × 1 km resolution in Harbin in 2016 was compiled using accessible county level, seasonal data and local parameters based on field investigation to increase temporal-spatial resolution. The results demonstrated the total PRD emissions of TSP, PM10, and PM2.5 in Harbin were 270,207 t, 54,597 t, 14,059 t, respectively. The temporal variation trends of pollutant emissions from PRD was consistent with the characteristics of precipitation, with lower emissions in winter and summer, and higher emissions in spring and autumn. The spatial allocation of emissions has a strong association with Harbin’s road network, mainly concentrating in the central urban area compared to the surrounding counties. Through scenario analysis, positive control measures were essential and effective for PRD pollution. The inventory developed in this study reflected the level of fugitive dust on paved road in Harbin, and it could reduce particulate matter pollution with the development of mitigation strategies and could comply with air quality modelling requirements, especially in the frigid region of northeastern China.


Sign in / Sign up

Export Citation Format

Share Document