scholarly journals Size-resolved aerosol water-soluble ionic compositions in the summer of Beijing: implication of regional secondary formation

2010 ◽  
Vol 10 (3) ◽  
pp. 947-959 ◽  
Author(s):  
S. Guo ◽  
M. Hu ◽  
Z. B. Wang ◽  
J. Slanina ◽  
Y. L. Zhao

Abstract. To characterize aerosol pollution in Beijing, size-resolved aerosols were collected by MOUDIs during CAREBEIJING-2006 field campaign at Peking University (urban site) and Yufa (upwind rural site). Fine particle concentrations (PM1.8 by MOUDI) were 99.8±77.4 μg/m3 and 78.2±58.4 μg/m3, with PM1.8/PM10 ratios of 0.64±0.08 and 0.76±0.08 at PKU and Yufa, respectively, and secondary compounds accounted for more than 50% in fine particles. PMF model analysis was used to resolve the particle modes. Three modes were resolved at Yufa, representing condensation, droplet and coarse mode. However, one more droplet mode with bigger size was resolved, which was considered probably from regional transport. Condensation mode accounted for 10%–60% of the total mass at both sites, indicating that the gas-to-particle condensation process was important in summer. The formation of sulfate was mainly attributed to in-cloud or aerosol droplet process (PKU 80%, Yufa 70%) and gas condensation process (PKU 14%, Yufa 22%). According to the thermodynamic instability of NH4NO3, size distributions of nitrate were classified as three categories by RH. The existence of Ca(NO3)2 in droplet mode indicated the reaction of HNO3 with crustal particles was also important in fine particles. A rough estimation was given that 69% of the PM10 and 87% of the PM1.8 in Beijing urban were regional contributions. Sulfate, ammonium and oxalate were formed regionally, with the regional contributions of 90%, 87% and 95% to PM1.8. Nitrate formation was local dominant. In summary regional secondary formation led to aerosol pollution in the summer of Beijing.

2009 ◽  
Vol 9 (6) ◽  
pp. 23955-23986 ◽  
Author(s):  
S. Guo ◽  
M. Hu ◽  
Z. B. Wang ◽  
J. Slanina ◽  
Y. L. Zhao

Abstract. To characterize aerosol pollution in Beijing, size-resolved aerosols were collected by MOUDIs during CAREBEIJING-2006 field campaign at Peking University (urban site) and Yufa (upwind rural site). Fine particle concentrations (PM1.8 by MOUDI) were 99.8±77.4 μg/m3 and 78.2±58.4 μg/m3, with PM1.8/PM10 ratios of 0.64±0.08 and 0.76±0.08 at PKU and Yufa, respectively, and secondary compounds accounted for more than 50% in fine particles. PMF model was used to resolve the particle modes. Three modes were resolved at Yufa, representing condensation, droplet and coarse mode. However, one more droplet mode with bigger size was resolved, which was considered probably from regional transport. Condensation mode accounted for 10%–60% of the total mass at both sites, indicating it must be taken into account in summer. The formation of sulfate was mainly attributed to in-cloud or aerosol droplet process (PKU 80%, Yufa 70%) and gas condensation process (PKU 14%, Yufa 22%). According to the thermodynamic instability of NH4NO3, size distributions of nitrate were classified as three categories by RH. The existence of Ca(NO3)2 in droplet mode indicated the reaction of HNO3 with crustal particles was also important in fine particles. Linear regression gave a rough estimation that 69% of the PM10 and 87% of the PM1.8 at PKU were regional contributions. Sulfate, ammonium and oxalate were formed regionally, with the regional contributions of 90%, 87% and 95% to PM1.8. Nitrate formation was local dominant. In summary regional secondary formation led to aerosol pollution in the summer of Beijing.


2021 ◽  
Vol Special Issue (1) ◽  
pp. 53-67
Author(s):  
Manisha Mishra ◽  
Umesh C Kulshrestha

The present study reports spatio-temporal distribution pattern of major gaseous (NH3 and NO2) and particulate water soluble total nitrogen (pWSTN) in the ambient air to explore the seasonal variation, major interactions and dominating sources. Considering the major hotspot of atmospheric reactive nitrogen (N) emission, three sites in Indo-Gangetic plain (IGP) were selected based on different local source parameters. Results have shown that gas phase reactive N contribute up to 90% of total analyzed reactive N, where NH3 imparted highest at all the three sites. Prayagraj, a fast growing urban site, has shown highest concentrations of NH3 (72.0 μg m−3), followed by Madhupur rural site (57.7 μg m−3) and Delhi, an urban megacity site (35.8 μg m−3). As compared to previous studies conducted at different sites of IGP, NH3 concentrations were reported to be the highest at the former two sites. However, unlike NH3, NO2 levels were recorded lower at Madhupur (3.1 μg m−3) and Prayagraj (9.4 μg m−3) sites as compared to Delhi (13.4 μg m−3). Similarly, pWSTN concentrations were in the order of Madhupur (6.6 μg m−3) < Prayagraj (10.0 μg m−3) < Delhi (10.1 μg m−3). A strong correlation of NO2 with pWSTN at urban sites has shown the crucial role of NO2 in the formation of nitrogenous aerosols. Significant spatial variation can be attributed to varying local emission sources ranging from microbial emission from improper sewage treatment and open waste dumping at Prayagraj, agricultural activities at Madhupur and vehicular exhausts at Delhi site.


Author(s):  
Xing Li ◽  
Shanshan Li ◽  
Qiulin Xiong ◽  
Xingchuan Yang ◽  
Mengxi Qi ◽  
...  

Beijing, which is the capital of China, suffers from severe Fine Particles (PM2.5) pollution during the heating season. In order to take measures to control the PM2.5 pollution and improve the atmospheric environmental quality, daily PM2.5 samples were collected at an urban site from 15 November to 31 December 2016, characteristics of PM2.5 chemical compositions and their effect on atmospheric visibility were analyzed. It was found that the daily average mass concentrations of PM2.5 ranged from 7.64 to 383.00 μg m−3, with an average concentration of 114.17 μg m−3. On average, the Organic Carbon (OC) and Elemental Carbon (EC) contributed 21.39% and 5.21% to PM2.5, respectively. Secondary inorganic ions (SNA: SO42− + NO3− + NH4+) dominated the Water-Soluble Inorganic Ions (WSIIs) and they accounted for 47.09% of PM2.5. The mass concentrations of NH4+, NO3− and SO42− during the highly polluted period were 8.08, 8.88 and 6.85 times greater, respectively, than during the clean period, which contributed most to the serious PM2.5 pollution through the secondary transformation of NO2, SO2 and NH3. During the highly polluted period, NH4NO3 contributed most to the reconstruction extinction coefficient (b′ext), accounting for 35.7%, followed by (NH4)2SO4 (34.44%) and Organic Matter (OM: 15.24%). The acidity of PM2.5 in Beijing was weakly acid. Acidity of PM2.5 and relatively high humidity could aggravate PM2.5 pollution and visibility impairment by promoting the generation of secondary aerosol. Local motor vehicles contributed the most to NO3−, OC, and visibility impairment in urban Beijing. Other sources of pollution in the area surrounding urban Beijing, including coal burning, agricultural sources, and industrial sources in the Hebei, Shandong, and Henan provinces, released large amounts of SO2, NH3, and NO2. These, which were transformed into SO42−, NH4+, and NO3− during the transmission process, respectively, and had a great impact on atmospheric visibility impairment.


2019 ◽  
Vol 19 (20) ◽  
pp. 12857-12874 ◽  
Author(s):  
Renmin Yuan ◽  
Xiaoye Zhang ◽  
Hao Liu ◽  
Yu Gui ◽  
Bohao Shao ◽  
...  

Abstract. Due to excessive anthropogenic emissions, heavy aerosol pollution episodes (HPEs) often occur during winter in the Beijing–Tianjin–Hebei (BTH) area of the North China Plain. Extensive observational studies have been carried out to understand the causes of HPEs; however, few measurements of vertical aerosol fluxes exist, despite them being the key to understanding vertical aerosol mixing, specifically during weak turbulence stages in HPEs. In the winter of 2016 and the spring of 2017 aerosol vertical mass fluxes were measured by combining large aperture scintillometer (LAS) observations, surface PM2.5 and PM10 mass concentrations, and meteorological observations, including temperature, relative humidity (RH), and visibility, at a rural site in Gucheng (GC), Hebei Province, and an urban site at the Chinese Academy of Meteorological Sciences (CAMS) in Beijing located 100 km to the northeast. These are based on the light propagation theory and surface-layer similarity theory. The near-ground aerosol mass flux was generally lower in winter than in spring and weaker in rural GC than in urban Beijing. This finding provides direct observational evidence for a weakened turbulence intensity and low vertical aerosol fluxes in winter and polluted areas such as GC. The HPEs included a transport stage (TS), an accumulative stage (AS), and a removal stage (RS). During the HPEs from 25 to 31 January 2017, in Beijing, the mean mass flux decreased by 51 % from 0.0049 mg m−2 s−1 in RSs to 0.0024 mg m−2 s−1 in the TSs. During the ASs, the mean mass flux decreased further to 0.00087 mg m−2 s−1, accounting for approximately one-third of the flux in the TSs. A similar reduction from the TSs to ASs was observed in the HPE from 16 to 22 December 2016 in GC. It can be seen that from the TS to the AS, the aerosol vertical turbulent flux decreased, but the aerosol particle concentration within the surface layer increased, and it is inferred that in addition to the contribution of regional transport from upwind areas during the TS, suppression of vertical turbulence mixing confining aerosols to a shallow boundary layer increased accumulation.


2009 ◽  
Vol 9 (5) ◽  
pp. 1521-1535 ◽  
Author(s):  
S. Szidat ◽  
M. Ruff ◽  
N. Perron ◽  
L. Wacker ◽  
H.-A. Synal ◽  
...  

Abstract. Particulate matter was collected at an urban site in Göteborg (Sweden) in February/March 2005 and in June/July 2006. Additional samples were collected at a rural site for the winter period. Total carbon (TC) concentrations were 2.1–3.6 μg m−3, 1.8–1.9 μg m−3, and 2.2–3.0 μg m−3 for urban/winter, rural/winter, and urban/summer conditions, respectively. Elemental carbon (EC), organic carbon (OC), water-insoluble OC (WINSOC), and water-soluble OC (WSOC) were analyzed for 14C in order to distinguish fossil from non-fossil emissions. As wood burning is the single major source of non-fossil EC, its contribution can be quantified directly. For non-fossil OC, the wood-burning fraction was determined independently by levoglucosan and 14C analysis and combined using Latin-hypercube sampling (LHS). For the winter period, the relative contribution of EC from wood burning to the total EC was >3 times higher at the rural site compared to the urban site, whereas the absolute concentrations of EC from wood burning were elevated only moderately at the rural compared to the urban site. Thus, the urban site is substantially more influenced by fossil EC emissions. For summer, biogenic emissions dominated OC concentrations most likely due to secondary organic aerosol (SOA) formation. During both seasons, a more pronounced fossil signal was observed for Göteborg than has previously been reported for Zurich, Switzerland. Analysis of air mass origin using back trajectories suggests that the fossil impact was larger when local sources dominated, whereas long-range transport caused an enhanced non-fossil signal. In comparison to other European locations, concentrations of levoglucosan and other monosaccharide anhydrides were low for the urban and the rural site in the area of Göteborg during winter.


2020 ◽  
Vol 36 (6) ◽  
pp. 727-741
Author(s):  
Bok-Jin Lee ◽  
Se-Chang Son ◽  
Geun-Hye Yu ◽  
Seoryeong Ju ◽  
Seungshik Park ◽  
...  

2008 ◽  
Vol 8 (4) ◽  
pp. 16255-16289 ◽  
Author(s):  
S. Szidat ◽  
M. Ruff ◽  
L. Wacker ◽  
H.-A. Synal ◽  
M. Hallquist ◽  
...  

Abstract. Particulate matter was collected at an urban site in Göteborg (Sweden) in February/March 2005 and in June/July 2006. Additional samples were collected at a rural site for the winter period. Elemental carbon (EC), organic carbon (OC), water-insoluble OC (WINSOC), and water-soluble OC (WSOC) were analyzed for 14C in order to distinguish fossil from non-fossil emissions. As wood burning is the single major source of non-fossil EC, its contribution can be quantified directly. For non-fossil OC, the wood burning fraction was determined independently by levoglucosan and 14C analysis and combined using Latin-hypercube sampling (LHS). For the winter period, the relative contribution of EC from wood burning to the total EC was >3 times higher at the rural site compared to the urban site, whereas the absolute concentrations of EC from wood burning were comparable at both sites. Thus, the urban site is substantially more influenced by fossil EC emissions. For summer, biogenic emissions dominated OC concentrations most likely due to secondary organic aerosol (SOA) formation. During both seasons, a more pronounced fossil signal was observed for Göteborg than has previously been reported for Zurich, Switzerland. Analysis of air mass origin using back trajectories suggests that the fossil impact was larger when local sources dominated, whereas long-range transport caused an enhanced non-fossil signal. In comparison to other European locations, concentrations of levoglucosan and other monosaccharide anhydrides were low for the urban and the rural site in the area of Göteborg during winter. The comparison of summer and winter results provides insight into the annual cycle of anthropogenic vs. biogenic contributions to the atmospheric aerosol.


2010 ◽  
Vol 10 (7) ◽  
pp. 17467-17490
Author(s):  
G. Wang ◽  
K. Kawamura ◽  
M. Xie ◽  
S. Hu ◽  
B. Zhou ◽  
...  

Abstract. Primary (i.e., sugars and sugar alcohols) and secondary water-soluble organic compounds (WSOCs) (i.e., dicarboxylic acids and aromatic acids) were characterised on a molecular level in size-segregated aerosols from the urban and mountain atmosphere of China and from the marine atmosphere in the outflow region of East Asia. Levoglucosan is the most abundant WSOCs in the urban and mountain atmosphere, whose accumulated concentrations in all stages are 1–3 orders of magnitude higher than those of marine aerosols. In contrast, malic, succinic and phthalic acids are dominant in the marine aerosols, which are 3–6 times more abundant than levoglucosan. This suggests that a continuous formation of secondary organic aerosols is occurring in the marine atmosphere during the long-range transport of air mass from inland China to the North Pacific. Sugars and sugar-alcohols, except for levoglucosan, gave a bimodal size distribution in the urban and mountain areas, peaking at 0.7–1.1 μm and >3.3 μm, and a unimodal distribution in the marine region, peaking at >3.3 μm. In contrast, levoglucosan and all the secondary WSOCs, except for benzoic and azelaic acids, showed a unimodal size distribution with a peak at 0.7–1.1 μm. Geometric mean diameters (GMDs) of the WSOCs in fine particles (<2.1 μm) at the urban site are larger in winter than in spring, due to an enhanced coagulation effect under the development of an inversion layer. However, GMDs of levoglucosan and most of the secondary WSOCs in the coarse mode are larger in the mountain and marine air and smaller in the urban air. This is most likely caused by an enhanced hygroscopic growth due to the high humidity of the mountain and marine atmosphere.


2013 ◽  
Vol 13 (6) ◽  
pp. 15749-15781
Author(s):  
W. T. Chen ◽  
M. Shao ◽  
S. H. Lu ◽  
M. Wang ◽  
L. M. Zeng

Abstract. Carbonyls are important intermediates in atmospheric photochemistry. To determine the relative contributions of primary and secondary carbonyl sources in Beijing, carbonyls and other trace gases were measured at Peking University in winter and summer. The Positive Matrix Factorization (PMF) model was used for source apportionment. As volatile organic compounds (VOCs) will undergo photochemical processes in the atmosphere, and such processes may interfere with factors identification, the relationships between the contributions of the resolved PMF factors to each non-methane hydrocarbon (NMHC) species and its kOH value were used to distinguish between photochemically aged factors and fresh factors. As the result of PMF, five factors were resolved in winter, and two of them were identified as sources of photochemically aged emissions. In summer, four factors were resolved, including an aged factor. Carbonyls in the aged factors were simulated by NMHCs consumption and the corresponding carbonyl production yields, and the simulated abundances agreed well with the results obtained by PMF. The source apportionment results indicated that secondary formation was the major source of carbonyls in both seasons, with the contribution of 51.2% and 46.0%. For the three major carbonyl species, primary anthropogenic sources contributed 28.9% and 32.3% to ambient formaldehyde, 53.7% and 41.6% to acetaldehyde, 68.1% and 56.2% to acetone in winter and summer, respectively.


2013 ◽  
Vol 13 (7) ◽  
pp. 18233-18276 ◽  
Author(s):  
J. Liu ◽  
M. Bergin ◽  
H. Guo ◽  
L. King ◽  
N. Kotra ◽  
...  

Abstract. Light absorbing organic carbon, often termed brown carbon, has the potential to significantly contribute to the visible light absorption budget, particularly at shorter wavelengths. Currently, the relative contributions of particulate brown carbon to light absorption, as well as the sources of brown carbon are poorly understood. With this in mind field measurements were made at both urban (Atlanta), and rural (Yorkville) sites in Georgia. Measurements in Atlanta were made at both a central site and a road side site adjacent to a main highway near the city center. Fine particle brown carbon optical absorption is estimated based on Mie calculations using direct size resolved measurements of chromophores in filter extracts. Size-resolved atmospheric aerosol samples were collected using a cascade impactor and analyzed for water-soluble organic carbon (WSOC), organic and elemental carbon (OC and EC), and solution light absorption spectra of water and methanol extracts. Methanol extracts were more light-absorbing than water extracts for all size ranges and wavelengths. Absorption refractive indices of the organic extracts were calculated from solution measurements for a range of wavelengths and used with Mie theory to predict the light absorption by fine particles comprised of these components, under the assumption that brown carbon and other aerosol components were externally mixed. For all three sites, chromophores were predominately in the accumulation mode with an aerodynamic mean diameter of 0.5 μm, an optically effective size range resulting in predicted particle light absorption being a factor of 2 higher than bulk solution absorption. Fine particle absorption was also measured with a Multi-Angle Absorption Photometer (MAAP) and seven-wavelength Aethalometer. Scattering-corrected aethalometer and MAAP absorption were in good agreement at 670 nm and Mie-estimated absorption based on size-resolved EC data were within 30% of these optical instruments. When applied to solution measurements, at all sites, Mie-predicted brown carbon absorption at 350 nm contributed a significant fraction (20 to 40%) relative to total light absorption, with highest contributions at the rural site where organic to elemental carbon ratios were highest. Brown carbon absorption, however, was highest by the roadside site due to vehicle emissions. The multi-wavelength aethalometer did not detect brown carbon, having an absorption Ångstrom exponent near one. Although the results are within the estimated Aethalometer uncertainties, the direct measurement of brown carbon in solution definitively shows that it is present and this Mie analysis suggests it is optically important in the near UV range in both a rural and urban environment during summer when biomass burning emissions are low.


Sign in / Sign up

Export Citation Format

Share Document