scholarly journals Formation and sink of glyoxal and methylglyoxal in a polluted subtropical environment: observation-based photochemical analysis and impact evaluation

2020 ◽  
Author(s):  
Zhenhao Ling ◽  
Qianqian Xie ◽  
Zhe Wang ◽  
Tao Wang ◽  
Hai Guo ◽  
...  

Abstract. The dicarbonyls, glyoxal (Gly) and methylglyoxal (Mgly) have been recognized as important precursors of secondary organic aerosols (SOAs) through the atmospheric heterogeneous process. In this study, field measurement was conducted at a receptor site in the Pearl River Delta (PRD) region in south China, and an observation based photochemical box model was subsequently applied to investigate the production and evolution of Gly and Mgly as well as their contributions to SOA formation. The model was coupled with a detailed gas-phase oxidation mechanism of volatile organic compounds (VOCs) (i.e., MCM v3.2), heterogeneous processes of Gly and Mgly (i.e., reversible partitioning in aqueous phase, irreversible volume reactions and irreversible surface uptake processes), and the gas-particle partitioning of oxidation products. The results suggested that without considering the heterogeneous processes of Gly and Mgly on aerosol surfaces would overpredict the mixing ratios of Gly and Mgly by factors of 3.3 and 3.5 compared to the observed levels. The agreement between observation and simulation improved significantly when the irreversible uptake and the reversible partitioning were incorporated into the model, which in total contributed ~ 72 and ~ 73 % to the destruction of Gly and Mgly, respectively. Further analysis on the photochemical budget of Gly and Mgly showed that the oxidation of aromatics by the OH radical was the major pathway producing Gly and Mgly, followed by degradation of alkynes and alkenes. Furthermore, based on the improved model mechanism, the contributions of VOCs oxidation to SOA formed from gas-particle partitioning (SOAgp) and from heterogeneous processes of Gly and Mgly (SOAhet) were also quantified. It was found that o-xylene was the most significant contributor to SOAgp formation (~ 29 %), while m/p-xylene and toluene made dominant contributions to SOAhet formation. Overall the heterogeneous processes of Gly and Mgly can explain ~ 21 % of SOA mass in the PRD region. The results of this study demonstrated the important roles of heterogeneous processes of Gly and Mgly in SOA formation, and highlighted the need for a better understanding of the evolution of intermediate oxidation products.

2020 ◽  
Vol 20 (19) ◽  
pp. 11451-11467
Author(s):  
Zhenhao Ling ◽  
Qianqian Xie ◽  
Min Shao ◽  
Zhe Wang ◽  
Tao Wang ◽  
...  

Abstract. The dicarbonyls glyoxal (Gly) and methylglyoxal (Mgly) have been recognized as important precursors of secondary organic aerosols (SOAs) through the atmospheric heterogeneous process. In this study, field measurement was conducted at a receptor site in the Pearl River Delta (PRD) region in southern China, and an observation-based photochemical box model was subsequently applied to investigate the production and evolution of Gly and Mgly as well as their contributions to SOA formation. The model was coupled with a detailed gas-phase oxidation mechanism of volatile organic compounds (VOCs) (i.e., Master Chemical Mechanism, MCM, v3.2), heterogeneous processes of Gly and Mgly (i.e., reversible partitioning in aqueous phase, irreversible volume reactions and irreversible surface uptake processes), and the gas–particle partitioning of oxidation products. The results suggested that without considering the heterogeneous processes of Gly and Mgly on aerosol surfaces, the model would overpredict the mixing ratios of Gly and Mgly by factors of 3.3 and 3.5 compared to the observed levels. The agreement between observation and simulation improved significantly when the irreversible uptake and the reversible partitioning were incorporated into the model, which in total both contributed ∼ 62 % to the destruction of Gly and Mgly during daytime. Further analysis of the photochemical budget of Gly and Mgly showed that the oxidation of aromatics by the OH radical was the major pathway producing Gly and Mgly, followed by degradation of alkynes and alkenes. Furthermore, based on the improved model mechanism, the contributions of VOC oxidation to SOA formed from gas–particle partitioning (SOAgp) and from heterogeneous processes of Gly and Mgly (SOAhet) were also quantified. It was found that o-xylene was the most significant contributor to SOAgp formation (∼ 29 %), while m,p-xylene and toluene made dominant contributions to SOAhet formation. Overall, the heterogeneous processes of Gly and Mgly can explain ∼ 21 % of SOA mass in the PRD region. The results of this study demonstrated the important roles of heterogeneous processes of Gly and Mgly in SOA formation and highlighted the need for a better understanding of the evolution of intermediate oxidation products.


2008 ◽  
Vol 8 (4) ◽  
pp. 14033-14085 ◽  
Author(s):  
D. Taraborrelli ◽  
M. G. Lawrence ◽  
T. M. Butler ◽  
R. Sander ◽  
J. Lelieveld

Abstract. We present an oxidation mechanism of intermediate size for isoprene (2-methyl-1,3-butadiene) suitable for simulations in regional and global atmospheric chemistry models, which we call MIM2. It is a reduction of the corresponding detailed mechanism in the Master Chemical Mechanism (MCM v3.1) and intended as the second version of the well-established Mainz Isoprene Mechanism (MIM). Our aim is to improve the representation of tropospheric chemistry in regional and global models under all NOx regimes. We evaluate MIM2 and re-evaluate MIM through comparisons with MCM v3.1. We find that MIM and MIM2 compute similar O3, OH and isoprene mixing ratios. Unlike MIM, MIM2 produces small relative biases for NOx and organic nitrogen-containing species due to a good representation of the alkyl and peroxy acyl nitrates (RONO2 and RC(O)OONO2). Moreover, MIM2 computes only small relative biases with respect to hydrogen peroxide (H2O2), methyl peroxide (CH3OOH), methanol (CH3OH), formaldehyde (HCHO), peroxy acetyl nitrate (PAN), and formic and acetic acids (HCOOH and CH3C(O)OH), being always below ≈6% in all NOx scenarios studied. Most of the isoprene oxidation products are represented explicitly, including methyl vinyl ketone (MVK), methacrolein (MACR), hydroxyacetone and methyl glyoxal. MIM2 is mass-conserving with respect to carbon, including CO2 as well. Therefore, it is suitable for studies assessing carbon monoxide (CO) from biogenic sources, as well as for studies focused on the carbon cycle. Compared to MIM, MIM2 considers new species like acetaldehyde (CH3CHO), propene (CH2=CHCH3) and glyoxal (CHOCHO) with global chemical production rates for the year 2005 of 7.3, 9.5 and 33.8 Tg/yr, respectively. Our new mechanism is expected to substantially improve the results of atmospheric chemistry models by more accurately representing the interplay between atmospheric chemistry, transport and deposition, especially of nitrogen reservoir species. MIM2 allows regional and global models to easily incorporate new experimental results on the chemistry of organic species.


2019 ◽  
Vol 19 (18) ◽  
pp. 11635-11649
Author(s):  
Michael Rolletter ◽  
Martin Kaminski ◽  
Ismail-Hakki Acir ◽  
Birger Bohn ◽  
Hans-Peter Dorn ◽  
...  

Abstract. The photooxidation of the most abundant monoterpene, α-pinene, by the hydroxyl radical (OH) was investigated at atmospheric concentrations in the atmospheric simulation chamber SAPHIR. Concentrations of nitric oxide (NO) were below 120 pptv. Yields of organic oxidation products are determined from measured time series giving values of 0.11±0.05, 0.19±0.06, and 0.05±0.03 for formaldehyde, acetone, and pinonaldehyde, respectively. The pinonaldehyde yield is at the low side of yields measured in previous laboratory studies, ranging from 0.06 to 0.87. These studies were mostly performed at reactant concentrations much higher than observed in the atmosphere. Time series of measured radical and trace-gas concentrations are compared to results from model calculations applying the Master Chemical Mechanism (MCM) 3.3.1. The model predicts pinonaldehyde mixing ratios that are at least a factor of 4 higher than measured values. At the same time, modeled hydroxyl and hydroperoxy (HO2) radical concentrations are approximately 25 % lower than measured values. Vereecken et al. (2007) suggested a shift of the initial organic peroxy radical (RO2) distribution towards RO2 species that do not yield pinonaldehyde but produce other organic products. Implementing these modifications reduces the model–measurement gap of pinonaldehyde by 20 % and also improves the agreement in modeled and measured radical concentrations by 10 %. However, the chemical oxidation mechanism needs further adjustment to explain observed radical and pinonaldehyde concentrations. This could be achieved by adjusting the initial RO2 distribution, but could also be done by implementing alternative reaction channels of RO2 species that currently lead to the formation of pinonaldehyde in the model.


2019 ◽  
Author(s):  
Michael Rolletter ◽  
Martin Kaminski ◽  
Ismail-Hakki Acir ◽  
Birger Bohn ◽  
Hans-Peter Dorn ◽  
...  

Abstract. The photooxidation of the most abundant monoterpene α-pinene, by the hydroxyl radical (OH) was investigated at atmospheric concentrations in the atmospheric simulation chamber SAPHIR. Concentrations of nitric oxide (NO) were below 120 pptv. Yields of organic oxidation products are determined from measured time series giving values of 0.11 ± 0.05, 0.19 ± 0.06, and 0.05 ± 0.03 for formaldehyde, acetone, and pinonaldehyde, respectively. The pinonaldehyde yield is at the low side of yields measured in previous laboratory studies, ranging from 0.06 to 0.87. These studies were mostly performed at reactant concentrations much higher than observed in the atmosphere. Time series of measured radical and trace gas concentrations are compared to results from model calculations applying the Master Chemical Mechanism (MCM) 3.3.1. The model predicts pinonaldehyde mixing ratios that are at least a factor of 4 higher than measured values. At the same time, modelled hydroxyl and hydroperoxy (HO2) radical concentrations are approximately 25 % lower than measured values. Vereecken et al. (2007) suggested a shift of the initial organic peroxy radical (RO2) distribution towards RO2 species that do not yield pinonaldehyde, but produce other organic products. Implementing these modifications reduces the model-measurement gap of pinonaldehyde by 20 % and also improves the agreement in modelled and measured radical concentrations by 10 %. However, the chemical oxidation mechanism needs further adjustment to explain observed radical and pinonaldehyde concentrations. This could be achieved by adjusting the initial RO2 distribution, but could also be done by implementing alternative reaction channels of RO2 species that currently lead to the formation of pinonaldehyde in the model.


2012 ◽  
Vol 12 (3) ◽  
pp. 1497-1513 ◽  
Author(s):  
X. Li ◽  
T. Brauers ◽  
R. Häseler ◽  
B. Bohn ◽  
H. Fuchs ◽  
...  

Abstract. We performed measurements of nitrous acid (HONO) during the PRIDE-PRD2006 campaign in the Pearl River Delta region 60 km north of Guangzhou, China, for 4 weeks in June 2006. HONO was measured by a LOPAP in-situ instrument which was setup in one of the campaign supersites along with a variety of instruments measuring hydroxyl radicals, trace gases, aerosols, and meteorological parameters. Maximum diurnal HONO mixing ratios of 1–5 ppb were observed during the nights. We found that the nighttime build-up of HONO can be attributed to the heterogeneous NO2 to HONO conversion on ground surfaces and the OH + NO reaction. In addition to elevated nighttime mixing ratios, measured noontime values of ≈200 ppt indicate the existence of a daytime source higher than the OH + NO→HONO reaction. Using the simultaneously recorded OH, NO, and HONO photolysis frequency, a daytime additional source strength of HONO (PM) was calculated to be 0.77 ppb h−1 on average. This value compares well to previous measurements in other environments. Our analysis of PM provides evidence that the photolysis of HNO3 adsorbed on ground surfaces contributes to the HONO formation.


2017 ◽  
Author(s):  
Andrew Lambe ◽  
Paola Massoli ◽  
Xuan Zhang ◽  
Manjula Canagaratna ◽  
John Nowak ◽  
...  

Abstract. Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3) is photolyzed at 254 nm to produce O(1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent SOA formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO + NO2) to nitric acid (HNO3), making it impossible to sustain NO at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D) + N2O→ 2NO, followed by the reaction NO + O3 → NO2+ O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D) + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO3−) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.


2008 ◽  
Vol 595-598 ◽  
pp. 967-974 ◽  
Author(s):  
E. Godlewska ◽  
M. Mitoraj ◽  
B. Jajko

This paper presents comparative studies on the performance of two titanium alloys (Ti- 6Al-1Mn, Ti-45.9Al-8Nb) in an oxidizing atmosphere at 700 oC and 800 oC. Testing procedure comprised thermogravimetric measurements at a constant temperature and in thermal cycling conditions (1-h and 20-h cycles at constant temperature followed by rapid cooling). The overall duration of the cyclic oxidation tests was up to 1000 hours. The oxidized specimens were analyzed in terms of chemical composition, phase composition, and morphology (SEM/EDS, TEM/EDS, XRD). The extent and forms of alloy degradation were evaluated on the basis of microscopic observation of specimen fractures and cross-sections. Selected specimens were examined by means of XPS, SIMS and GDS. Oxidation mechanism of Ti-46Al-8Nb was assessed a two-stage oxidation method using oxygen-18 and oxygen-16. Apparently, the oxidation of this alloy proceeded in several stages. According to XPS, already after quite short reaction time, the specimens were covered with a very thin oxide film, mainly composed of aluminum oxide (corundum). A thicker layer of titanium dioxide (rutile) developed underneath. These two layers were typical of the oxidation products formed on this alloy, even when tested in thermal cycling conditions. In general, the scale had a complex multilayer structure but it was thin and adherent. Under the continuous layer of titania, there was a fine-grained zone composed of mixed oxides. The alloy/scale interface was marked with niobium-rich precipitates embedded in a titanium-rich matrix. There were some indications of secondary processes occurring under the initial continuous oxide layers (e.g. characteristic layout of pores or voids). Thickness of inner scale layers clearly increased according to parabolic kinetics, while that of the outer compact layer (mainly TiO2) changed only slightly. The distribution of oxygen isotopes across the scale/alloy interface indicated two-way diffusion of the reacting species – oxygen inward and metals outward diffusion. Silicon deposited on Ti-6Al-1Mn alloy positively affected scale adhesion and remarkably reduced alloy degradation rate.


2019 ◽  
Author(s):  
Michelle L. Lew ◽  
Pamela S. Rickly ◽  
Brandon P. Bottorff ◽  
Sofia Sklaveniti ◽  
Thierry Léonardis ◽  
...  

Abstract. Reactions of the hydroxyl (OH) and peroxy radicals (HO2 and RO2) play a central role in the chemistry of the atmosphere. In addition to controlling the lifetimes of many trace gases important to issues of global climate change, OH radical reactions initiate the oxidation of volatile organic compounds (VOCs) which can lead to the production of ozone and secondary organic aerosols in the atmosphere. Previous measurements of these radicals in forest environments characterized by high mixing ratios of isoprene and low mixing ratios of nitrogen oxides (NOx) have shown serious discrepancies with modeled concentrations. These results bring into question our understanding of the atmospheric chemistry of isoprene and other biogenic VOCs under low NOx conditions. During the summer of 2015, OH and HO2 radical concentrations as well as total OH reactivity were measured using Laser-Induced Fluorescence - Fluorescence Assay by Gas Expansion (LIF-FAGE) techniques as part of the Indiana Radical, Reactivity and Ozone Production Intercomparison (IRRONIC). This campaign took place in a forested area near the Indiana University, Bloomington campus characterized by high mixing ratios of isoprene and low mixing ratios of NOx. Supporting measurements of photolysis rates, VOCs, NOx, and other species were used to constrain a zero-dimensional box model based on the Regional Atmospheric Chemistry Mechanism (RACM2) and the Master Chemical Mechanism (MCM). Using an OH chemical scavenger technique, the study revealed the presence of an interference with the LIF-FAGE measurements of OH that increased with both ambient concentrations of ozone and temperature. Subtraction of the interference resulted in measured OH concentrations that were in better agreement with model predictions, although the model still underestimated the measured concentrations, likely due to an underestimation of the concentration of NO at this site. Measurements of HO2 radical concentrations during the campaign included a fraction of isoprene-based peroxy radicals (HO2* = HO2 + αRO2) and were found to agree with model predictions. On average, the measured reactivity was consistent with that calculated from measured OH sinks to within 20 %, with modeled oxidation products accounting for the missing reactivity, although significant missing reactivity (approximately 40 % of the total measured reactivity) was observed on some days.


Sign in / Sign up

Export Citation Format

Share Document