scholarly journals Scant evidence for a volcanically forced winter warming over Eurasia following the Krakatau eruption of August 1883

2020 ◽  
Author(s):  
Lorenzo M. Polvani ◽  
Suzana J. Camargo

Abstract. A recent study has presented compelling new evidence suggesting that the observed Eurasian warming in the winter following the 1992 Pinatubo eruption was, in all likelihood, unrelated to the presence of volcanic aerosols in the stratosphere. Building on that study, we here turn our attention to the only other low-latitude eruption in the instrumental period with a comparably large Volcanic Explosivity Index (VEI): the Krakatau eruption of August 1883. We study in detail the temperature anomalies in the first winter following that eruption, analyzing (1) observations, (2) reanalyses, and (3) models. Three findings emerge from our analysis. First, the observed post-Krakatau winter warming over Eurasia was unremarkable (only between 1- and 2-σ of the distribution from 1850 to present). Second, reanalyses indicate the existence of very large uncertainties, so much so that a Eurasian cooling is not incompatible with observations. Third, models robustly show the complete absence of a volcanically forced Eurasian winter warming: we here analyze both a 100-member initial-condition ensemble, and 140 simulations from the Phase 5 of Coupled Model Intercomparison Project. This wealth of evidence strongly suggests that, as in the case of Pinatubo, the observed warming over Eurasia in the winter of 1883/84 was, in all likelihood, unrelated to the Krakatau eruption. Together with the results for Pinatubo, we are led to conclude that if volcanically forced Eurasian winter warming exists at all, an eruption with a magnitude far exceeding these two (VEI = 6) events is needed.

2020 ◽  
Vol 20 (22) ◽  
pp. 13687-13700
Author(s):  
Lorenzo M. Polvani ◽  
Suzana J. Camargo

Abstract. A recent study has presented compelling new evidence suggesting that the observed Eurasian warming in the winter following the 1992 Pinatubo eruption was, in all likelihood, unrelated to the presence of volcanic aerosols in the stratosphere. Building on that study, we turn our attention to the only other low-latitude eruption in the instrumental period with a comparably large magnitude: the Krakatau eruption of August 1883. We study the temperature anomalies in the first winter following that eruption in detail, analyzing (1) observations, (2) reanalyses, and (3) models. Three findings emerge from our analysis. First, the observed post-Krakatau winter warming over Eurasia was unremarkable (only between 1σ and 2σ of the distribution from 1850 to present). Second, reanalyses based on assimilating surface pressure alone indicate the existence of very large uncertainties, so much so that a Eurasian cooling is not incompatible with those reanalyses. Third, models robustly show the complete absence of a volcanically forced Eurasian winter warming: here, we analyze both a 100-member initial-condition ensemble and 140 simulations from Phase 5 of the Coupled Model Intercomparison Project. This wealth of evidence strongly suggests that, as in the case of Pinatubo, the observed warming over Eurasia in the winter of 1883–84 was, in all likelihood, unrelated to the Krakatau eruption. This, taken together with a similar result for Pinatubo, leads us to conclude that if volcanically forced Eurasian winter warming exists at all, an eruption with a magnitude far exceeding these two events would be needed to produce a detectable surface warming.


2016 ◽  
Author(s):  
Johann H. Jungclaus ◽  
Edouard Bard ◽  
Mélanie Baroni ◽  
Pascale Braconnot ◽  
Jian Cao ◽  
...  

Abstract. The pre-industrial millennium is among the periods selected by the Paleoclimate Model Intercomparison Project (PMIP) for experiments contributing to the sixth phase of the Coupled Model Intercomparison Project (CMIP6) and the fourth phase of PMIP (PMIP4). The past1000 transient simulations serve to investigate the response to (mainly) natural forcing under background conditions not too different from today, and to discriminate between forced and internally generated variability on interannual to centennial time scales. This manuscript describes the motivation and the experimental set-ups for the PMIP4-CMIP6 past1000 simulations, and discusses the forcing agents: orbital, solar, volcanic, land-use/land-cover changes, and variations in greenhouse gas concentrations. The past1000 simulations covering the pre-industrial millennium from 850 Common Era (CE) to 1849 CE have to be complemented by historical simulations (1850 to 2014 CE) following the CMIP6 protocol. The external forcings for the past1000 experiments have been adapted to provide a seamless transition across these time periods. Protocols for the past1000 simulations have been divided into three tiers. A default forcing data set has been defined for the “tier-1” (the CMIP6 past1000) experiment. However, the PMIP community has maintained the flexibility to conduct coordinated sensitivity experiments to explore uncertainty in forcing reconstructions as well as parameter uncertainty in dedicated “tier-2” simulations. Additional experiments (“tier-3”) are defined to foster collaborative model experiments focusing on the early instrumental period and to extend the temporal range and the scope of the simulations. This manuscript outlines current and future research foci and common analyses for collaborative work between the PMIP and the observational communities (reconstructions, instrumental data).


2017 ◽  
Vol 10 (11) ◽  
pp. 4005-4033 ◽  
Author(s):  
Johann H. Jungclaus ◽  
Edouard Bard ◽  
Mélanie Baroni ◽  
Pascale Braconnot ◽  
Jian Cao ◽  
...  

Abstract. The pre-industrial millennium is among the periods selected by the Paleoclimate Model Intercomparison Project (PMIP) for experiments contributing to the sixth phase of the Coupled Model Intercomparison Project (CMIP6) and the fourth phase of the PMIP (PMIP4). The past1000 transient simulations serve to investigate the response to (mainly) natural forcing under background conditions not too different from today, and to discriminate between forced and internally generated variability on interannual to centennial timescales. This paper describes the motivation and the experimental set-ups for the PMIP4-CMIP6 past1000 simulations, and discusses the forcing agents orbital, solar, volcanic, and land use/land cover changes, and variations in greenhouse gas concentrations. The past1000 simulations covering the pre-industrial millennium from 850 Common Era (CE) to 1849 CE have to be complemented by historical simulations (1850 to 2014 CE) following the CMIP6 protocol. The external forcings for the past1000 experiments have been adapted to provide a seamless transition across these time periods. Protocols for the past1000 simulations have been divided into three tiers. A default forcing data set has been defined for the Tier 1 (the CMIP6 past1000) experiment. However, the PMIP community has maintained the flexibility to conduct coordinated sensitivity experiments to explore uncertainty in forcing reconstructions as well as parameter uncertainty in dedicated Tier 2 simulations. Additional experiments (Tier 3) are defined to foster collaborative model experiments focusing on the early instrumental period and to extend the temporal range and the scope of the simulations. This paper outlines current and future research foci and common analyses for collaborative work between the PMIP and the observational communities (reconstructions, instrumental data).


Author(s):  
Isaac Kwesi Nooni ◽  
Daniel Fiifi T. Hagan ◽  
Guojie Wang ◽  
Waheed Ullah ◽  
Jiao Lu ◽  
...  

The main goal of this study was to assess the interannual variations and spatial patterns of projected changes in simulated evapotranspiration (ET) in the 21st century over continental Africa based on the latest Shared Socioeconomic Pathways and the Representative Concentration Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) provided by the France Centre National de Recherches Météorologiques (CNRM-CM) model in the Sixth Phase of Coupled Model Intercomparison Project (CMIP6) framework. The projected spatial and temporal changes were computed for three time slices: 2020–2039 (near future), 2040–2069 (mid-century), and 2080–2099 (end-of-the-century), relative to the baseline period (1995–2014). The results show that the spatial pattern of the projected ET was not uniform and varied across the climate region and under the SSP-RCPs scenarios. Although the trends varied, they were statistically significant for all SSP-RCPs. The SSP5-8.5 and SSP3-7.0 projected higher ET seasonality than SSP1-2.6 and SSP2-4.5. In general, we suggest the need for modelers and forecasters to pay more attention to changes in the simulated ET and their impact on extreme events. The findings provide useful information for water resources managers to develop specific measures to mitigate extreme events in the regions most affected by possible changes in the region’s climate. However, readers are advised to treat the results with caution as they are based on a single GCM model. Further research on multi-model ensembles (as more models’ outputs become available) and possible key drivers may provide additional information on CMIP6 ET projections in the region.


2011 ◽  
Vol 24 (16) ◽  
pp. 4402-4418 ◽  
Author(s):  
Aaron Donohoe ◽  
David S. Battisti

Abstract The planetary albedo is partitioned into a component due to atmospheric reflection and a component due to surface reflection by using shortwave fluxes at the surface and top of the atmosphere in conjunction with a simple radiation model. The vast majority of the observed global average planetary albedo (88%) is due to atmospheric reflection. Surface reflection makes a relatively small contribution to planetary albedo because the atmosphere attenuates the surface contribution to planetary albedo by a factor of approximately 3. The global average planetary albedo in the ensemble average of phase 3 of the Coupled Model Intercomparison Project (CMIP3) preindustrial simulations is also primarily (87%) due to atmospheric albedo. The intermodel spread in planetary albedo is relatively large and is found to be predominantly a consequence of intermodel differences in atmospheric albedo, with surface processes playing a much smaller role despite significant intermodel differences in surface albedo. The CMIP3 models show a decrease in planetary albedo under a doubling of carbon dioxide—also primarily due to changes in atmospheric reflection (which explains more than 90% of the intermodel spread). All models show a decrease in planetary albedo due to the lowered surface albedo associated with a contraction of the cryosphere in a warmer world, but this effect is small compared to the spread in planetary albedo due to model differences in the change in clouds.


2013 ◽  
Vol 26 (18) ◽  
pp. 7187-7197 ◽  
Author(s):  
Wei Cheng ◽  
John C. H. Chiang ◽  
Dongxiao Zhang

Abstract The Atlantic meridional overturning circulation (AMOC) simulated by 10 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) for the historical (1850–2005) and future climate is examined. The historical simulations of the AMOC mean state are more closely matched to observations than those of phase 3 of the Coupled Model Intercomparison Project (CMIP3). Similarly to CMIP3, all models predict a weakening of the AMOC in the twenty-first century, though the degree of weakening varies considerably among the models. Under the representative concentration pathway 4.5 (RCP4.5) scenario, the weakening by year 2100 is 5%–40% of the individual model's historical mean state; under RCP8.5, the weakening increases to 15%–60% over the same period. RCP4.5 leads to the stabilization of the AMOC in the second half of the twenty-first century and a slower (then weakening rate) but steady recovery thereafter, while RCP8.5 gives rise to a continuous weakening of the AMOC throughout the twenty-first century. In the CMIP5 historical simulations, all but one model exhibit a weak downward trend [ranging from −0.1 to −1.8 Sverdrup (Sv) century−1; 1 Sv ≡ 106 m3 s−1] over the twentieth century. Additionally, the multimodel ensemble–mean AMOC exhibits multidecadal variability with a ~60-yr periodicity and a peak-to-peak amplitude of ~1 Sv; all individual models project consistently onto this multidecadal mode. This multidecadal variability is significantly correlated with similar variations in the net surface shortwave radiative flux in the North Atlantic and with surface freshwater flux variations in the subpolar latitudes. Potential drivers for the twentieth-century multimodel AMOC variability, including external climate forcing and the North Atlantic Oscillation (NAO), and the implication of these results on the North Atlantic SST variability are discussed.


2016 ◽  
Author(s):  
Stephen M. Griffies ◽  
Gokhan Danabasoglu ◽  
Paul J. Durack ◽  
Alistair J. Adcroft ◽  
V. Balaji ◽  
...  

Abstract. The Ocean Model Intercomparison Project (OMIP) aims to provide a framework for evaluating, understanding, and improving the ocean and sea-ice components of global climate and earth system models contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). OMIP addresses these aims in two complementary manners: (A) by providing an experimental protocol for global ocean/sea-ice models run with a prescribed atmospheric forcing, (B) by providing a protocol for ocean diagnostics to be saved as part of CMIP6. We focus here on the physical component of OMIP, with a companion paper (Orr et al., 2016) offering details for the inert chemistry and interactive biogeochemistry. The physical portion of the OMIP experimental protocol follows that of the interannual Coordinated Ocean-ice Reference Experiments (CORE-II). Since 2009, CORE-I (Normal Year Forcing) and CORE-II have become the standard method to evaluate global ocean/sea-ice simulations and to examine mechanisms for forced ocean climate variability. The OMIP diagnostic protocol is relevant for any ocean model component of CMIP6, including the DECK (Diagnostic, Evaluation and Characterization of Klima experiments), historical simulations, FAFMIP (Flux Anomaly Forced MIP), C4MIP (Coupled Carbon Cycle Climate MIP), DAMIP (Detection and Attribution MIP), DCPP (Decadal Climate Prediction Project), ScenarioMIP (Scenario MIP), as well as the ocean-sea ice OMIP simulations. The bulk of this paper offers scientific rationale for saving these diagnostics.


2020 ◽  
Author(s):  
Sophie Nowicki ◽  
Antony J. Payne ◽  
Heiko Goelzer ◽  
Helene Seroussi ◽  
William H. Lipscomb ◽  
...  

Abstract. Projection of the contribution of ice sheets to sea-level change as part of the Coupled Model Intercomparison Project – phase 6 (CMIP6) takes the form of simulations from coupled ice-sheet-climate models and standalone ice sheet models, overseen by the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). This paper describes the experimental setup for process-based sea-level change projections to be performed with standalone Greenland and Antarctic ice sheet models in the context of ISMIP6. The ISMIP6 protocol relies on a suite of polar atmospheric and oceanic CMIP-based forcing for ice sheet models, in order to explore the uncertainty in projected sea-level change due to future emissions scenarios, CMIP models, ice sheet models, and parameterizations for ice-ocean interactions. We describe here the approach taken for defining the suite of ISMIP6 standalone ice sheet simulations, document the experimental framework and implementation, as well as present an overview of the ISMIP6 forcing to be used by participating ice sheet modeling groups.


Sign in / Sign up

Export Citation Format

Share Document