scholarly journals Review of 'Comparing different generations of idealized solar geoengineering simulations in the Geoengineering Model Intercomparison Project (GeoMIP)'

2020 ◽  
Author(s):  
Anonymous
2018 ◽  
Author(s):  
Liren Wei ◽  
Duoying Ji ◽  
Chiyuan Miao ◽  
John C. Moore

Abstract. Flood risk is projected to increase under projections of future warming climates due to an enhanced hydrological cycle. Solar geoengineering is known to reduce precipitation and slowdown the hydrological cycle, and may be therefore be expected to offset increased flood risk. We examine this hypothesis using streamflow and river discharge responses to the representative concentration pathway RCP4.5 and Geoengineering Model Intercomparison Project (GeoMIP) G4 experiments. We also calculate changes in 30, 50, 100-year flood return periods relative to the historical (1960–1999) period under the RCP4.5 and G4 scenarios. Similar spatial patterns are produced for each return period, although those under G4 are closer to historical values than under RCP4.5. Under G4 generally lower streamflows are produced on the western sides of Eurasia and North America, with higher flows on their eastern sides. In the southern hemisphere northern parts of the land masses have lower streamflow under G4, and southern parts increases relative to RCP4.5. So in general solar geoengineering does appear to reduce flood risk in most regions, but the relative effects are largely determined by this large scale geographic pattern. Both streamflow and return period show increased drying of the Amazon under both RCP4.5 and G4 scenarios, with more drying under G4.


2018 ◽  
Vol 18 (21) ◽  
pp. 16033-16050 ◽  
Author(s):  
Liren Wei ◽  
Duoying Ji ◽  
Chiyuan Miao ◽  
Helene Muri ◽  
John C. Moore

Abstract. Flood risk is projected to increase under future warming climates due to an enhanced hydrological cycle. Solar geoengineering is known to reduce precipitation and slow down the hydrological cycle and may therefore be expected to offset increased flood risk. We examine this hypothesis using streamflow and river discharge responses to Representative Concentration Pathway 4.5 (RCP4.5) and the Geoengineering Model Intercomparison Project (GeoMIP) G4 scenarios. Compared with RCP4.5, streamflow on the western sides of Eurasia and North America is increased under G4, while the eastern sides see a decrease. In the Southern Hemisphere, the northern parts of landmasses have lower streamflow under G4, and streamflow of southern parts increases relative to RCP4.5. We furthermore calculate changes in 30-, 50-, and 100-year flood return periods relative to the historical (1960–1999) period under the RCP4.5 and G4 scenarios. Similar spatial patterns are produced for each return period, although those under G4 are closer to historical values than under RCP4.5. Hence, in general, solar geoengineering does appear to reduce flood risk in most regions, but the overall effects are largely determined by this large-scale geographic pattern. Although G4 stratospheric aerosol geoengineering ameliorates the Amazon drying under RCP4.5, with a weak increase in soil moisture, the decreased runoff and streamflow leads to an increased flood return period under G4 compared with RCP4.5.


2018 ◽  
Vol 18 (3) ◽  
pp. 2287-2305 ◽  
Author(s):  
Rick D. Russotto ◽  
Thomas P. Ackerman

Abstract. The polar amplification of warming and the ability of the Intertropical Convergence Zone (ITCZ) to shift to the north or south are two very important problems in climate science. Examining these behaviors in global climate models (GCMs) running solar geoengineering experiments is helpful not only for predicting the effects of solar geoengineering but also for understanding how these processes work under increased carbon dioxide (CO2). Both polar amplification and ITCZ shifts are closely related to the meridional transport of moist static energy (MSE) by the atmosphere. This study examines changes in MSE transport in 10 fully coupled GCMs in experiment G1 of the Geoengineering Model Intercomparison Project (GeoMIP), in which the solar constant is reduced to compensate for the radiative forcing from abruptly quadrupled CO2 concentrations. In G1, poleward MSE transport decreases relative to preindustrial conditions in all models, in contrast to the Coupled Model Intercomparison Project phase 5 (CMIP5) abrupt4xCO2 experiment, in which poleward MSE transport increases. We show that since poleward energy transport decreases rather than increases, and local feedbacks cannot change the sign of an initial temperature change, the residual polar amplification in the G1 experiment must be due to the net positive forcing in the polar regions and net negative forcing in the tropics, which arise from the different spatial patterns of the simultaneously imposed solar and CO2 forcings. However, the reduction in poleward energy transport likely plays a role in limiting the polar warming in G1. An attribution study with a moist energy balance model shows that cloud feedbacks are the largest source of uncertainty regarding changes in poleward energy transport in midlatitudes in G1, as well as for changes in cross-equatorial energy transport, which are anticorrelated with ITCZ shifts.


2021 ◽  
Vol 21 (6) ◽  
pp. 4231-4247
Author(s):  
Ben Kravitz ◽  
Douglas G. MacMartin ◽  
Daniele Visioni ◽  
Olivier Boucher ◽  
Jason N. S. Cole ◽  
...  

Abstract. Solar geoengineering has been receiving increased attention in recent years as a potential temporary solution to offset global warming. One method of approximating global-scale solar geoengineering in climate models is via solar reduction experiments. Two generations of models in the Geoengineering Model Intercomparison Project (GeoMIP) have now simulated offsetting a quadrupling of the CO2 concentration with solar reduction. This simulation is idealized and designed to elicit large responses in the models. Here, we show that energetics, temperature, and hydrological cycle changes in this experiment are statistically indistinguishable between the two ensembles. Of the variables analyzed here, the only major differences involve highly parameterized and uncertain processes, such as cloud forcing or terrestrial net primary productivity. We conclude that despite numerous structural differences and uncertainties in models over the past two generations of models, including an increase in climate sensitivity in the latest generation of models, the models are consistent in their aggregate climate response to global solar dimming.


2020 ◽  
Author(s):  
Ben Kravitz ◽  
Douglas G. MacMartin ◽  
Daniele Visioni ◽  
Olivier Boucher ◽  
Jason N. S. Cole ◽  
...  

Abstract. Solar geoengineering has been receiving increased attention in recent years as a potential temporary solution to offset global warming. One method of approximating global-scale solar geoengineering in climate models is via solar reduction experiments. Two generations of models in the Geoengineering Model Intercomparison Project (GeoMIP) have now simulated offsetting a quadrupling of the CO2 concentration with solar reduction. This simulation is artificial and designed to elicit large responses in the models. Here we show that energetics, temperature, and hydrological cycle changes in this experiment are statistically indistinguishable between the two ensembles. Of the variables analyzed here, the only major differences involve highly parameterized and uncertain processes, such as cloud forcing or terrestrial net primary productivity. We conclude that despite numerous structural differences and uncertainties in models over the past 20 years, including an increase in climate sensitivity in the latest generation of models, broad conclusions about the climate response to global solar dimming remain robust.


Author(s):  
Bian He ◽  
Xiaoqi Zhang ◽  
Anmin Duan ◽  
Qing Bao ◽  
Yimin Liu ◽  
...  

AbstractLarge-ensemble simulations of the atmosphere-only time-slice experiments for the Polar Amplification Model Intercomparison Project (PAMIP) were carried out by the model group of the Chinese Academy of Sciences (CAS) Flexible Global Ocean-Atmosphere-Land System (FGOALS-f3-L). Eight groups of experiments forced by different combinations of the sea surface temperature (SST) and sea ice concentration (SIC) for pre-industrial, present-day, and future conditions were performed and published. The time-lag method was used to generate the 100 ensemble members, with each member integrating from 1 April 2000 to 30 June 2001 and the first two months as the spin-up period. The basic model responses of the surface air temperature (SAT) and precipitation were documented. The results indicate that Arctic amplification is mainly caused by Arctic SIC forcing changes. The SAT responses to the Arctic SIC decrease alone show an obvious increase over high latitudes, which is similar to the results from the combined forcing of SST and SIC. However, the change in global precipitation is dominated by the changes in the global SST rather than SIC, partly because tropical precipitation is mainly driven by local SST changes. The uncertainty of the model responses was also investigated through the analysis of the large-ensemble members. The relative roles of SST and SIC, together with their combined influence on Arctic amplification, are also discussed. All of these model datasets will contribute to PAMIP multi-model analysis and improve the understanding of polar amplification.


Author(s):  
Isaac Kwesi Nooni ◽  
Daniel Fiifi T. Hagan ◽  
Guojie Wang ◽  
Waheed Ullah ◽  
Jiao Lu ◽  
...  

The main goal of this study was to assess the interannual variations and spatial patterns of projected changes in simulated evapotranspiration (ET) in the 21st century over continental Africa based on the latest Shared Socioeconomic Pathways and the Representative Concentration Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) provided by the France Centre National de Recherches Météorologiques (CNRM-CM) model in the Sixth Phase of Coupled Model Intercomparison Project (CMIP6) framework. The projected spatial and temporal changes were computed for three time slices: 2020–2039 (near future), 2040–2069 (mid-century), and 2080–2099 (end-of-the-century), relative to the baseline period (1995–2014). The results show that the spatial pattern of the projected ET was not uniform and varied across the climate region and under the SSP-RCPs scenarios. Although the trends varied, they were statistically significant for all SSP-RCPs. The SSP5-8.5 and SSP3-7.0 projected higher ET seasonality than SSP1-2.6 and SSP2-4.5. In general, we suggest the need for modelers and forecasters to pay more attention to changes in the simulated ET and their impact on extreme events. The findings provide useful information for water resources managers to develop specific measures to mitigate extreme events in the regions most affected by possible changes in the region’s climate. However, readers are advised to treat the results with caution as they are based on a single GCM model. Further research on multi-model ensembles (as more models’ outputs become available) and possible key drivers may provide additional information on CMIP6 ET projections in the region.


Author(s):  
Binghao Jia ◽  
Longhuan Wang ◽  
Yan Wang ◽  
Ruichao Li ◽  
Xin Luo ◽  
...  

AbstractThe datasets of the five Land-offline Model Intercomparison Project (LMIP) experiments using the Chinese Academy of Sciences Land Surface Model (CAS-LSM) of CAS Flexible Global-Ocean-Atmosphere-Land System Model Grid-point version 3 (CAS FGOALS-g3) are presented in this study. These experiments were forced by five global meteorological forcing datasets, which contributed to the framework of the Land Surface Snow and Soil Moisture Model Intercomparison Project (LS3MIP) of CMIP6. These datasets have been released on the Earth System Grid Federation node. In this paper, the basic descriptions of the CAS-LSM and the five LMIP experiments are shown. The performance of the soil moisture, snow, and land-atmosphere energy fluxes was preliminarily validated using satellite-based observations. Results show that their mean states, spatial patterns, and seasonal variations can be reproduced well by the five LMIP simulations. It suggests that these datasets can be used to investigate the evolutionary mechanisms of the global water and energy cycles during the past century.


2021 ◽  
Vol 16 (2) ◽  
pp. 375-392 ◽  
Author(s):  
Hiroto Shiraki ◽  
Masahiro Sugiyama ◽  
Yuhji Matsuo ◽  
Ryoichi Komiyama ◽  
Shinichiro Fujimori ◽  
...  

AbstractThe Japanese power system has unique characteristics with regard to variable renewable energies (VREs), such as higher costs, lower potentials, and less flexibility with the grid connection compared to other major greenhouse-gas-emitting countries. We analyzed the role of renewable energies (REs) in the future Japanese power sector using the results from the model intercomparison project Energy Modeling Forum (EMF) 35 Japan Model Intercomparison Project (JMIP) using varying emission reduction targets and key technological conditions across scenarios. We considered the uncertainties for future capital costs of solar photovoltaics, wind turbines, and batteries in addition to the availability of nuclear and carbon dioxide capture and storage. The results show that REs supply more than 40% of electricity in most of the technology sensitivity scenarios (median 51.0%) when assuming an 80% emission reduction in 2050. The results (excluding scenarios that assume the continuous growth of nuclear power and/or the abundant availability of domestic biomass and carbon-free hydrogen) show that the median VRE shares reach 52.2% in 2050 in the 80% emission reduction scenario. On the contrary, the availability of newly constructed nuclear power, affordable biomass, and carbon-free hydrogen can reduce dependence on VREs to less than 20%. The policy costs were much more sensitive to the capital costs and resource potential of VREs than the battery cost uncertainties. Specifically, while the doubled capital costs of VRE resulted in a 13.0% (inter-model median) increase in the policy cost, the halved capital costs of VREs reduced 8.7% (inter-model median) of the total policy cost. These results imply that lowering the capital costs of VREs would be effective in achieving a long-term emission reduction target considering the current high Japanese VRE costs.


Sign in / Sign up

Export Citation Format

Share Document