scholarly journals Comparing different generations of idealized solar geoengineering simulations in the Geoengineering Model Intercomparison Project (GeoMIP)

2021 ◽  
Vol 21 (6) ◽  
pp. 4231-4247
Author(s):  
Ben Kravitz ◽  
Douglas G. MacMartin ◽  
Daniele Visioni ◽  
Olivier Boucher ◽  
Jason N. S. Cole ◽  
...  

Abstract. Solar geoengineering has been receiving increased attention in recent years as a potential temporary solution to offset global warming. One method of approximating global-scale solar geoengineering in climate models is via solar reduction experiments. Two generations of models in the Geoengineering Model Intercomparison Project (GeoMIP) have now simulated offsetting a quadrupling of the CO2 concentration with solar reduction. This simulation is idealized and designed to elicit large responses in the models. Here, we show that energetics, temperature, and hydrological cycle changes in this experiment are statistically indistinguishable between the two ensembles. Of the variables analyzed here, the only major differences involve highly parameterized and uncertain processes, such as cloud forcing or terrestrial net primary productivity. We conclude that despite numerous structural differences and uncertainties in models over the past two generations of models, including an increase in climate sensitivity in the latest generation of models, the models are consistent in their aggregate climate response to global solar dimming.

2020 ◽  
Author(s):  
Ben Kravitz ◽  
Douglas G. MacMartin ◽  
Daniele Visioni ◽  
Olivier Boucher ◽  
Jason N. S. Cole ◽  
...  

Abstract. Solar geoengineering has been receiving increased attention in recent years as a potential temporary solution to offset global warming. One method of approximating global-scale solar geoengineering in climate models is via solar reduction experiments. Two generations of models in the Geoengineering Model Intercomparison Project (GeoMIP) have now simulated offsetting a quadrupling of the CO2 concentration with solar reduction. This simulation is artificial and designed to elicit large responses in the models. Here we show that energetics, temperature, and hydrological cycle changes in this experiment are statistically indistinguishable between the two ensembles. Of the variables analyzed here, the only major differences involve highly parameterized and uncertain processes, such as cloud forcing or terrestrial net primary productivity. We conclude that despite numerous structural differences and uncertainties in models over the past 20 years, including an increase in climate sensitivity in the latest generation of models, broad conclusions about the climate response to global solar dimming remain robust.


2020 ◽  
Author(s):  
Alan M. Haywood ◽  
Julia C. Tindall ◽  
Harry J. Dowsett ◽  
Aisling M. Dolan ◽  
Kevin M. Foley ◽  
...  

Abstract. The Pliocene epoch has great potential to improve our understanding of the long-term climatic and environmental consequences of an atmospheric CO2 concentration near ~ 400 parts per million by volume. Here we present the large-scale features of Pliocene climate as simulated by a new ensemble of climate models of varying complexity and spatial resolution and based on new reconstructions of boundary conditions (the Pliocene Model Intercomparison Project Phase 2; PlioMIP2). As a global annual average, modelled surface air temperatures increase by between 1.4 and 4.7 °C relative to pre-industrial with a multi-model mean value of 2.8 °C. Annual mean total precipitation rates increase by 6 % (range: 2 %–13 %). On average, surface air temperature (SAT) increases are 1.3 °C greater over the land than over the oceans, and there is a clear pattern of polar amplification with warming polewards of 60° N and 60° S exceeding the global mean warming by a factor of 2.4. In the Atlantic and Pacific Oceans, meridional temperature gradients are reduced, while tropical zonal gradients remain largely unchanged. Although there are some modelling constraints, there is a statistically significant relationship between a model's climate response associated with a doubling in CO2 (Equilibrium Climate Sensitivity; ECS) and its simulated Pliocene surface temperature response. The mean ensemble earth system response to doubling of CO2 (including ice sheet feedbacks) is approximately 50 % greater than ECS, consistent with results from the PlioMIP1 ensemble. Proxy-derived estimates of Pliocene sea-surface temperatures are used to assess model estimates of ECS and indicate a range in ECS from 2.5 to 4.3 °C. This result is in general accord with the range in ECS presented by previous IPCC Assessment Reports.


2018 ◽  
Author(s):  
Liren Wei ◽  
Duoying Ji ◽  
Chiyuan Miao ◽  
John C. Moore

Abstract. Flood risk is projected to increase under projections of future warming climates due to an enhanced hydrological cycle. Solar geoengineering is known to reduce precipitation and slowdown the hydrological cycle, and may be therefore be expected to offset increased flood risk. We examine this hypothesis using streamflow and river discharge responses to the representative concentration pathway RCP4.5 and Geoengineering Model Intercomparison Project (GeoMIP) G4 experiments. We also calculate changes in 30, 50, 100-year flood return periods relative to the historical (1960–1999) period under the RCP4.5 and G4 scenarios. Similar spatial patterns are produced for each return period, although those under G4 are closer to historical values than under RCP4.5. Under G4 generally lower streamflows are produced on the western sides of Eurasia and North America, with higher flows on their eastern sides. In the southern hemisphere northern parts of the land masses have lower streamflow under G4, and southern parts increases relative to RCP4.5. So in general solar geoengineering does appear to reduce flood risk in most regions, but the relative effects are largely determined by this large scale geographic pattern. Both streamflow and return period show increased drying of the Amazon under both RCP4.5 and G4 scenarios, with more drying under G4.


2018 ◽  
Vol 18 (21) ◽  
pp. 16033-16050 ◽  
Author(s):  
Liren Wei ◽  
Duoying Ji ◽  
Chiyuan Miao ◽  
Helene Muri ◽  
John C. Moore

Abstract. Flood risk is projected to increase under future warming climates due to an enhanced hydrological cycle. Solar geoengineering is known to reduce precipitation and slow down the hydrological cycle and may therefore be expected to offset increased flood risk. We examine this hypothesis using streamflow and river discharge responses to Representative Concentration Pathway 4.5 (RCP4.5) and the Geoengineering Model Intercomparison Project (GeoMIP) G4 scenarios. Compared with RCP4.5, streamflow on the western sides of Eurasia and North America is increased under G4, while the eastern sides see a decrease. In the Southern Hemisphere, the northern parts of landmasses have lower streamflow under G4, and streamflow of southern parts increases relative to RCP4.5. We furthermore calculate changes in 30-, 50-, and 100-year flood return periods relative to the historical (1960–1999) period under the RCP4.5 and G4 scenarios. Similar spatial patterns are produced for each return period, although those under G4 are closer to historical values than under RCP4.5. Hence, in general, solar geoengineering does appear to reduce flood risk in most regions, but the overall effects are largely determined by this large-scale geographic pattern. Although G4 stratospheric aerosol geoengineering ameliorates the Amazon drying under RCP4.5, with a weak increase in soil moisture, the decreased runoff and streamflow leads to an increased flood return period under G4 compared with RCP4.5.


2018 ◽  
Vol 18 (3) ◽  
pp. 2287-2305 ◽  
Author(s):  
Rick D. Russotto ◽  
Thomas P. Ackerman

Abstract. The polar amplification of warming and the ability of the Intertropical Convergence Zone (ITCZ) to shift to the north or south are two very important problems in climate science. Examining these behaviors in global climate models (GCMs) running solar geoengineering experiments is helpful not only for predicting the effects of solar geoengineering but also for understanding how these processes work under increased carbon dioxide (CO2). Both polar amplification and ITCZ shifts are closely related to the meridional transport of moist static energy (MSE) by the atmosphere. This study examines changes in MSE transport in 10 fully coupled GCMs in experiment G1 of the Geoengineering Model Intercomparison Project (GeoMIP), in which the solar constant is reduced to compensate for the radiative forcing from abruptly quadrupled CO2 concentrations. In G1, poleward MSE transport decreases relative to preindustrial conditions in all models, in contrast to the Coupled Model Intercomparison Project phase 5 (CMIP5) abrupt4xCO2 experiment, in which poleward MSE transport increases. We show that since poleward energy transport decreases rather than increases, and local feedbacks cannot change the sign of an initial temperature change, the residual polar amplification in the G1 experiment must be due to the net positive forcing in the polar regions and net negative forcing in the tropics, which arise from the different spatial patterns of the simultaneously imposed solar and CO2 forcings. However, the reduction in poleward energy transport likely plays a role in limiting the polar warming in G1. An attribution study with a moist energy balance model shows that cloud feedbacks are the largest source of uncertainty regarding changes in poleward energy transport in midlatitudes in G1, as well as for changes in cross-equatorial energy transport, which are anticorrelated with ITCZ shifts.


2020 ◽  
Vol 16 (5) ◽  
pp. 1847-1872 ◽  
Author(s):  
Chris M. Brierley ◽  
Anni Zhao ◽  
Sandy P. Harrison ◽  
Pascale Braconnot ◽  
Charles J. R. Williams ◽  
...  

Abstract. The mid-Holocene (6000 years ago) is a standard time period for the evaluation of the simulated response of global climate models using palaeoclimate reconstructions. The latest mid-Holocene simulations are a palaeoclimate entry card for the Palaeoclimate Model Intercomparison Project (PMIP4) component of the current phase of the Coupled Model Intercomparison Project (CMIP6) – hereafter referred to as PMIP4-CMIP6. Here we provide an initial analysis and evaluation of the results of the experiment for the mid-Holocene. We show that state-of-the-art models produce climate changes that are broadly consistent with theory and observations, including increased summer warming of the Northern Hemisphere and associated shifts in tropical rainfall. Many features of the PMIP4-CMIP6 simulations were present in the previous generation (PMIP3-CMIP5) of simulations. The PMIP4-CMIP6 ensemble for the mid-Holocene has a global mean temperature change of −0.3 K, which is −0.2 K cooler than the PMIP3-CMIP5 simulations predominantly as a result of the prescription of realistic greenhouse gas concentrations in PMIP4-CMIP6. Biases in the magnitude and the sign of regional responses identified in PMIP3-CMIP5, such as the amplification of the northern African monsoon, precipitation changes over Europe, and simulated aridity in mid-Eurasia, are still present in the PMIP4-CMIP6 simulations. Despite these issues, PMIP4-CMIP6 and the mid-Holocene provide an opportunity both for quantitative evaluation and derivation of emergent constraints on the hydrological cycle, feedback strength, and potentially climate sensitivity.


2011 ◽  
Vol 4 (3) ◽  
pp. 571-577 ◽  
Author(s):  
A. M. Haywood ◽  
H. J. Dowsett ◽  
M. M. Robinson ◽  
D. K. Stoll ◽  
A. M. Dolan ◽  
...  

Abstract. The Palaeoclimate Modelling Intercomparison Project has expanded to include a model intercomparison for the mid-Pliocene warm period (3.29 to 2.97 million yr ago). This project is referred to as PlioMIP (the Pliocene Model Intercomparison Project). Two experiments have been agreed upon and together compose the initial phase of PlioMIP. The first (Experiment 1) is being performed with atmosphere-only climate models. The second (Experiment 2) utilises fully coupled ocean-atmosphere climate models. Following on from the publication of the experimental design and boundary conditions for Experiment 1 in Geoscientific Model Development, this paper provides the necessary description of differences and/or additions to the experimental design for Experiment 2.


2016 ◽  
Author(s):  
Davide Zanchettin ◽  
Myriam Khodri ◽  
Claudia Timmreck ◽  
Matthew Toohey ◽  
Anja Schmidt ◽  
...  

Abstract. The enhancement of the stratospheric aerosol layer by volcanic eruptions induces a complex set of responses causing global and regional climate effects on a broad range of timescales. Uncertainties exist regarding the climatic response to strong volcanic forcing identified in coupled climate simulations that contributed to the fifth phase of the Climate Model Intercomparison Project (CMIP5). In order to better understand the sources of these model diversities, the model intercomparison project on the climate response to volcanic forcing (VolMIP) has defined a coordinated set of idealized volcanic perturbation experiments to be carried out in alignment with the CMIP6 protocol. VolMIP provides a common stratospheric aerosol dataset for each experiment to eliminate differences in the applied volcanic forcing, and defines a set of initial conditions to determine how internal climate variability contributes to determining the response. VolMIP will assess to what extent volcanically-forced responses of the coupled ocean-atmosphere system are robustly simulated by state-of-the-art coupled climate models and identify the causes that limit robust simulated behavior, especially differences in the treatment of physical processes. This paper illustrates the design of the idealized volcanic perturbation experiments in the VolMIP protocol and describes the common aerosol forcing input datasets to be used.


Sign in / Sign up

Export Citation Format

Share Document