scholarly journals Stratospheric Ozone Response to Sulfate Aerosol and Solar Dimming Climate Interventions based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) Simulations

2021 ◽  
Author(s):  
Simone Tilmes ◽  
Daniele Visioni ◽  
Andy Jones ◽  
James Haywood ◽  
Roland Séférian ◽  
...  

Abstract. This study assesses the impacts of sulfate aerosol intervention (SAI) and solar dimming on stratospheric ozone based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) experiments, called G6sulfur and G6solar. For G6sulfur the stratospheric sulfate aerosol burden is increased to reflect some of the incoming solar radiation back into space in order to cool the surface climate, while for G6solar the global solar constant is reduced to achieve the same goal. The high emissions scenario SSP5-8.5 is used as the baseline experiment and surface temperature from the medium emission scenario SSP2-4.5 is the target. Based on three out of six Earth System Models (ESMs) that include interactive stratospheric chemistry, we find significant differences in the ozone distribution between G6solar and G6sulfur experiments compared to SSP5-8.5 and SSP2-4.5, which differ by both region and season. Both SAI and solar dimming methods reduce incoming solar insolation and result in tropospheric temperatures comparable to SSP2-4.5 conditions. G6sulfur increases the concentration of absorbing sulfate aerosols in the stratosphere, which increases lower tropical stratospheric temperatures by between 5 to 13 K for six different ESMs, leading to changes in stratospheric transport. The increase of the aerosol burden also increases aerosol surface area density, which is important for heterogeneous chemical reactions. The resulting changes in ozone include a significant reduction of total column ozone (TCO) in the Southern Hemisphere polar region in October of 10 DU at the onset and up to 20 DU by the end of the century. The relatively small reduction in TCO for the multi-model mean in the first two decades results from variations in the required sulfur injections in the models and differences in the complexity of the chemistry schemes, with no significant ozone loss for 2 out of 3 models. The decrease in the second half of the 21st century counters increasing TCO between SSP2-4.5 and SSP5-8.5 due to the super-recovery resulting from increasing greenhouse gases. In contrast, in the Northern Hemisphere (NH) high latitudes, only a small initial decline in TCO is simulated, with little change in TCO by the end of the century compared to SSP5-8.5. All models consistently simulate an increase in TCO in the NH mid-latitudes up to 20 DU compared to SSP5-8.5, in addition to 20 DU increase resulting from increasing greenhouse gases between SSP2-4.5 and SSP5-8.5. G6solar counters zonal wind and tropical upwelling changes between SSP2-4.5 and SSP5-8.5 but does not change stratospheric temperatures. Solar dimming results in little change in TCO compared to SSP5-8.5 and does not counter the effects of the ozone super-recovery. Only in the tropics, G6solar results in an increase of TCO of up to 8 DU compared to SSP2-4.5, which may counter the projected reduction due to climate change in the high forcing future scenario. This work identifies differences in the response of SAI and solar dimming on ozone, which are at least partly due to differences and shortcomings in the complexity of aerosol microphysics, chemistry, and the description of ozone photolysis in the models. It also identifies that solar dimming, if viewed as an analog to SAI using a predominantly scattering aerosol, would, for the most part, not counter the potential harmful increase in TCO beyond historical values induced by increasing greenhouse gases.

2017 ◽  
Author(s):  
Olaf Morgenstern ◽  
Hideharu Akiyoshi ◽  
Yousuke Yamashita ◽  
Douglas E. Kinnison ◽  
Rolando R. Garcia ◽  
...  

Abstract. Ozone fields simulated for the Chemistry-Climate Model Initiative (CCMI) will be used as forcing data in the 6th Coupled Model Intercomparison Project (CMIP6). Here we assess, using reference and sensitivity simulations produced for phase 1 of CCMI, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances (ODSs), and a combination of carbon dioxide and other greenhouse gases (GHGs). We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. The likely cause of this is lower-stratospheric transport and dynamical responses exhibiting substantial inter-model differences. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings.


2016 ◽  
Vol 16 (1) ◽  
pp. 343-363 ◽  
Author(s):  
F. Iglesias-Suarez ◽  
P. J. Young ◽  
O. Wild

Abstract. Stratospheric ozone and associated climate impacts in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) simulations are evaluated in the recent past (1980–2000), and examined in the long-term (1850–2100) using the Representative Concentration Pathways (RCPs) low- and high-emission scenarios (RCP2.6 and RCP8.5, respectively) for the period 2000–2100. ACCMIP multi-model mean total column ozone (TCO) trends compare favourably, within uncertainty estimates, against observations. Particularly good agreement is seen in the Antarctic austral spring (−11.9 % dec−1 compared to observed  ∼  −13.9 ± 10.4 % dec−1), although larger deviations are found in the Arctic's boreal spring (−2.1 % dec−1 compared to observed  ∼  −5.3 ± 3.3 % dec−1). The simulated ozone hole has cooled the lower stratosphere during austral spring in the last few decades (−2.2 K dec−1). This cooling results in Southern Hemisphere summertime tropospheric circulation changes captured by an increase in the Southern Annular Mode (SAM) index (1.3 hPa dec−1). In the future, the interplay between the ozone hole recovery and greenhouse gases (GHGs) concentrations may result in the SAM index returning to pre-ozone hole levels or even with a more positive phase from around the second half of the century (−0.4 and 0.3 hPa dec−1 for the RCP2.6 and RCP8.5, respectively). By 2100, stratospheric ozone sensitivity to GHG concentrations is greatest in the Arctic and Northern Hemisphere midlatitudes (37.7 and 16.1 DU difference between the RCP2.6 and RCP8.5, respectively), and smallest over the tropics and Antarctica continent (2.5 and 8.1 DU respectively). Future TCO changes in the tropics are mainly determined by the upper stratospheric ozone sensitivity to GHG concentrations, due to a large compensation between tropospheric and lower stratospheric column ozone changes in the two RCP scenarios. These results demonstrate how changes in stratospheric ozone are tightly linked to climate and show the benefit of including the processes interactively in climate models.


2018 ◽  
Vol 18 (2) ◽  
pp. 1091-1114 ◽  
Author(s):  
Olaf Morgenstern ◽  
Kane A. Stone ◽  
Robyn Schofield ◽  
Hideharu Akiyoshi ◽  
Yousuke Yamashita ◽  
...  

Abstract. Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1) will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1.


2010 ◽  
Vol 10 (7) ◽  
pp. 17341-17367
Author(s):  
N. P. Gillett ◽  
H. Akiyoshi ◽  
S. Bekki ◽  
V. Eyring ◽  
R. Garcia ◽  
...  

Abstract. Three recently-completed sets of simulations of multiple chemistry-climate models with greenhouse gases only, with all anthropogenic forcings, and with anthropogenic and natural forcings, allow the causes of observed stratospheric changes to be quantitatively assessed using detection and attribution techniques. The total column ozone response to halogenated ozone depleting substances and to natural forcings is detectable and consistent in models and observations. However, the total ozone response to greenhouse gases in the models and observations appears to be inconsistent, which may be due to the models' inability to properly simulate tropospheric ozone changes. In the middle and upper stratosphere, simulated and observed SBUV/SAGE ozone changes are broadly consistent, and separate anthropogenic and natural responses are detectable in observations. The influence of ozone depleting substances and natural forcings can also be detected separately in observed lower stratospheric temperature, and the magnitudes of the simulated and observed responses to these forcings and to greenhouse gas changes are found to be consistent. In the mid and upper stratosphere the simulated natural and combined anthropogenic responses are detectable and consistent with observations, but the influences of greenhouse gases and ozone-depleting substances could not be separately detected in our analysis.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 112
Author(s):  
Lin Shang ◽  
Jiali Luo ◽  
Chunxiao Wang

This study compares and analyzes simulations of ozone under different scenarios by three CMIP6 models (IPSL-CM6A, MRI-ESM2 and CESM-WACCM). Results indicate that as the social vulnerability and anthropogenic radiative forcing is increasing, the change of total column ozone in the tropical stratosphere is not linear. Compared to the SSP2-4.5 and SSP5-8.5 scenarios, the SSP1-2.6 and SSP3-7.0 are more favorable for the increase in stratospheric ozone mass in the tropics. Arctic ozone would never recover under the SSP1-2.6 scenario; however, the Antarctica ozone would gradually recover in all scenarios. Under the SSP1-2.6 and SSP2-4.5 scenarios, the trend of tropical total column ozone is mainly determined by the trend of column ozone in the tropical troposphere. Under the SSP3-7.0 scenario, tropospheric ozone concentration will significantly increase; under the SSP5-8.5 scenario, ozone concentration will distinctly increase in the middle and lower troposphere.


2018 ◽  
Vol 18 (11) ◽  
pp. 8409-8438 ◽  
Author(s):  
Sandip S. Dhomse ◽  
Douglas Kinnison ◽  
Martyn P. Chipperfield ◽  
Ross J. Salawitch ◽  
Irene Cionni ◽  
...  

Abstract. >We analyse simulations performed for the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion caused by anthropogenic stratospheric chlorine and bromine. We consider a total of 155 simulations from 20 models, including a range of sensitivity studies which examine the impact of climate change on ozone recovery. For the control simulations (unconstrained by nudging towards analysed meteorology) there is a large spread (±20 DU in the global average) in the predictions of the absolute ozone column. Therefore, the model results need to be adjusted for biases against historical data. Also, the interannual variability in the model results need to be smoothed in order to provide a reasonably narrow estimate of the range of ozone return dates. Consistent with previous studies, but here for a Representative Concentration Pathway (RCP) of 6.0, these new CCMI simulations project that global total column ozone will return to 1980 values in 2049 (with a 1σ uncertainty of 2043–2055). At Southern Hemisphere mid-latitudes column ozone is projected to return to 1980 values in 2045 (2039–2050), and at Northern Hemisphere mid-latitudes in 2032 (2020–2044). In the polar regions, the return dates are 2060 (2055–2066) in the Antarctic in October and 2034 (2025–2043) in the Arctic in March. The earlier return dates in the Northern Hemisphere reflect the larger sensitivity to dynamical changes. Our estimates of return dates are later than those presented in the 2014 Ozone Assessment by approximately 5–17 years, depending on the region, with the previous best estimates often falling outside of our uncertainty range. In the tropics only around half the models predict a return of ozone to 1980 values, around 2040, while the other half do not reach the 1980 value. All models show a negative trend in tropical total column ozone towards the end of the 21st century. The CCMI models generally agree in their simulation of the time evolution of stratospheric chlorine and bromine, which are the main drivers of ozone loss and recovery. However, there are a few outliers which show that the multi-model mean results for ozone recovery are not as tightly constrained as possible. Throughout the stratosphere the spread of ozone return dates to 1980 values between models tends to correlate with the spread of the return of inorganic chlorine to 1980 values. In the upper stratosphere, greenhouse gas-induced cooling speeds up the return by about 10–20 years. In the lower stratosphere, and for the column, there is a more direct link in the timing of the return dates of ozone and chlorine, especially for the large Antarctic depletion. Comparisons of total column ozone between the models is affected by different predictions of the evolution of tropospheric ozone within the same scenario, presumably due to differing treatment of tropospheric chemistry. Therefore, for many scenarios, clear conclusions can only be drawn for stratospheric ozone columns rather than the total column. As noted by previous studies, the timing of ozone recovery is affected by the evolution of N2O and CH4. However, quantifying the effect in the simulations analysed here is limited by the few realisations available for these experiments compared to internal model variability. The large increase in N2O given in RCP 6.0 extends the ozone return globally by ∼ 15 years relative to N2O fixed at 1960 abundances, mainly because it allows tropical column ozone to be depleted. The effect in extratropical latitudes is much smaller. The large increase in CH4 given in the RCP 8.5 scenario compared to RCP 6.0 also lengthens ozone return by ∼ 15 years, again mainly through its impact in the tropics. Overall, our estimates of ozone return dates are uncertain due to both uncertainties in future scenarios, in particular those of greenhouse gases, and uncertainties in models. The scenario uncertainty is small in the short term but increases with time, and becomes large by the end of the century. There are still some model–model differences related to well-known processes which affect ozone recovery. Efforts need to continue to ensure that models used for assessment purposes accurately represent stratospheric chemistry and the prescribed scenarios of ozone-depleting substances, and only those models are used to calculate return dates. For future assessments of single forcing or combined effects of CO2, CH4, and N2O on the stratospheric column ozone return dates, this work suggests that it is more important to have multi-member (at least three) ensembles for each scenario from every established participating model, rather than a large number of individual models.


2015 ◽  
Vol 15 (17) ◽  
pp. 25175-25229
Author(s):  
F. Iglesias-Suarez ◽  
P. J. Young ◽  
O. Wild

Abstract. Stratospheric ozone and associated climate impacts in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) simulations are evaluated in the recent past (1980–2000), and examined in the long-term (1850–2100) using the Representative Concentration Pathways low and high emission scenarios (RCP2.6 and RCP8.5, respectively) for the period 2000–2100. ACCMIP multi-model mean total column ozone (TCO) trends compare favourably, within uncertainty estimates, against observations. Particularly good agreement is seen in the Antarctic austral spring (−11.9 % dec−1 compared to observed ~ −13.8 ± 11 % dec−1), although larger deviations are found in the Arctic's boreal spring (−2.1 % dec−1 compared to observed ~ −5.3 ± 3 % dec−1). The simulated ozone hole has cooled the lower stratosphere during austral spring in the last few decades (−2.2 K dec−1). This cooling results in Southern Hemisphere summertime tropospheric circulation changes captured by an increase in the Southern Annular Mode (SAM) index (1.27 hPa dec−1). In the future, the interplay between the ozone hole recovery and greenhouse gases (GHGs) concentrations may result in the SAM index returning to pre-ozone hole levels or even with a more positive phase from around the second half of the century (−0.4 and 0.3 hPa dec−1 for the RCP2.6 and RCP8.5, respectively). By 2100, stratospheric ozone sensitivity to GHG concentrations is greatest in the Arctic and Northern Hemisphere midlatitudes (37.7 and 16.1 DU difference between the RCP2.6 and RCP8.5, respectively), and smallest over the tropics and Antarctica continent (2.5 and 8.1 DU respectively). Future TCO changes in the tropics are mainly determined by the upper stratospheric ozone sensitivity to GHG concentrations, due to a large compensation between tropospheric and lower stratospheric column ozone changes in the two RCP scenarios. These results demonstrate how changes in stratospheric ozone are tightly linked to climate and show the benefit of including the processes interactively in climate models.


2011 ◽  
Vol 11 (2) ◽  
pp. 599-609 ◽  
Author(s):  
N. P. Gillett ◽  
H. Akiyoshi ◽  
S. Bekki ◽  
P. Braesicke ◽  
V. Eyring ◽  
...  

Abstract. Three recently-completed sets of simulations of multiple chemistry-climate models with greenhouse gases only, with all anthropogenic forcings, and with anthropogenic and natural forcings, allow the causes of observed stratospheric changes to be quantitatively assessed using detection and attribution techniques. The total column ozone response to halogenated ozone depleting substances and to natural forcings is detectable in observations, but the total column ozone response to greenhouse gas changes is not separately detectable. In the middle and upper stratosphere, simulated and observed SBUV/SAGE ozone changes are broadly consistent, and separate anthropogenic and natural responses are detectable in observations. The influence of ozone depleting substances and natural forcings can also be detected separately in observed lower stratospheric temperature, and the magnitudes of the simulated and observed responses to these forcings and to greenhouse gas changes are found to be consistent. In the mid and upper stratosphere the simulated natural and combined anthropogenic responses are detectable and consistent with observations, but the influences of greenhouse gases and ozone-depleting substances could not be separately detected in our analysis.


2020 ◽  
Author(s):  
William Ball ◽  
Gabriel Chiodo ◽  
Marta Abalos ◽  
Justin Alsing

<p>The ozone layer was damaged last century due to the emissions of long-lived ozone depleting substances (ODSs). Following the Montreal Protocol that banned ODSs, a reduction in total column ozone (TCO) ceased in the late 1990s. Today, ozone above 32 km displays a clear recovery. Nevertheless, a clear detection of TCO recovery in observations remains elusive, and there is mounting evidence of decreasing ozone in the lower stratosphere (below 24 km) in the tropics out to the mid-latitudes (30-60°). Chemistry climate models (CCMs) predict that lower stratospheric ozone will decrease in the tropics by 2100, but not at mid-latitudes.<br> <br>Here, we compare the CCMVal-2 models, which informed the WMO 2014 ozone assessment and show similar tendencies to more recent CCMI data, with observations over 1998-2016. We find that over this period, modelled ozone declines in the tropics are similar to those seen in observations and are likely driven by increased tropical upwelling. Conversely, CCMs generally show ozone increases in the mid-latitude lower stratosphere where observations show a negative tendency. We provide evidence from JRA-55 and ERA-Interim reanalyses indicating that mid-latitude trends are due to enhanced mixing between the tropics and extratropics, in agreement with other studies. </p><p>Additional analysis of temperature and water vapour further supports our findings. Overall, our results suggest that expected changes in large scale circulation from increasing greenhouse gases may now already be underway. While model projections suggest extra-tropical ozone should recover by 2100, our study raises questions about their ability to simulate lower stratospheric changes in this region.</p>


2018 ◽  
Author(s):  
Sandip Dhomse ◽  
Douglas Kinnison ◽  
Martyn P. Chipperfield ◽  
Irene Cionni ◽  
Michaela Hegglin ◽  
...  

Abstract. We analyse simulations performed for the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion caused by anthropogenic stratospheric chlorine and bromine. We consider a total of 155 simulations from 20 models, including a range of sensitivity studies which examine the impact of climate change on ozone recovery. For the control simulations (unconstrained by nudging towards analysed meteorology) there is a large spread (±20 DU in the global average) in the predictions of the absolute ozone column. Therefore, the model results need to be adjusted for biases against historical data. Also, the interannual variability in the model results need to be smoothed in order to provide a reasonably narrow estimate of the range of ozone return dates. Consistent with previous studies, but here for a Representative Concentration Pathway (RCP) of 6.0, these new CCMI simulations project that global total column ozone will return to 1980 values in 2047 (with a 1-σ uncertainty of 2042–2052). At Southern Hemisphere mid-latitudes column ozone is projected to return to 1980 values in 2046 (2042–2050), and at Northern Hemisphere mid-latitudes in 2034 (2024–2044). In the polar regions, the return dates are 2062 (2055–2066) in the Antarctic in October and 2035 (2025–2040) in the Arctic in March. The earlier return dates in the NH reflect the larger sensitivity to dynamical changes. Our estimates of return dates are later than those presented in the 2014 Ozone Assessment by approximately 5–15 years, depending on the region. In the tropics only around half the models predict a return to 1980 values, at around 2040, while the other half do not reach this value. All models show a negative trend in tropical total column ozone towards the end of the 21st century. The CCMI models generally agree in their simulation of the time evolution of stratospheric chlorine, which is the main driver of ozone loss and recovery. However, there are a few outliers which show that the multi-model mean results for ozone recovery are not as tightly constrained as possible. Throughout the stratosphere the spread of ozone return dates to 1980 values between models tends to correlate with the spread of the return of inorganic chlorine to 1980 values. In the upper stratosphere, greenhouse gas-induced cooling speeds up the return by about 10–20 years. In the lower stratosphere, and for the column, there is a more direct link in the timing of the return dates, especially for the large Antarctic depletion. Comparisons of total column ozone between the models is affected by different predictions of the evolution of tropospheric ozone within the same scenario, presumably due to differing treatment of tropospheric chemistry. Therefore, for many scenarios, clear conclusions can only be drawn for stratospheric ozone columns rather than the total column. As noted by previous studies, the timing of ozone recovery is affected by the evolution of N2O and CH4. However, the effect in the simulations analysed here is small and at the limit of detectability from the few realisations available for these experiments compared to internal model variability. The large increase in N2O given in RCP 6.0 extends the ozone return globally by ~ 15 years relative to N2O fixed at 1960 abundances, mainly because it allows tropical column ozone to be depleted. The effect in extratropical latitudes is much smaller. The large increase in CH4 given in the RCP 8.5 scenario compared to RCP 6.0 also changes ozone return by ~ 15 years, again mainly through its impact in the tropics. For future assessments of single forcing or combined effects of CO2, CH4, and N2O on the stratospheric column ozone return dates, this work suggests that is more important to have multi-member (at least 3) ensembles for each scenario from each established participating model, rather than a large number of individual models.


Sign in / Sign up

Export Citation Format

Share Document