scholarly journals Intercomparison of Middle Atmospheric Meteorological Analyses for the Northern Hemisphere Winter 2009–2010

2021 ◽  
Author(s):  
John P. McCormack ◽  
V. Lynn Harvey ◽  
Nicholas Pedatella ◽  
Dai Koshin ◽  
Kaoru Sato ◽  
...  

Abstract. Detailed meteorological analyses based on observations extending through the middle atmosphere (~15–100 km altitude) can provide key information to whole atmosphere modelling systems regarding the physical mechanisms linking day-to-day changes in ionospheric electron density to meteorological variability near the Earth’s surface. It is currently unclear how middle atmosphere analyses produced by various research groups consistently represent the wide range of proposed linking mechanisms involving migrating and non-migrating tides, planetary waves, gravity waves, and their impact on the zonal mean state in the mesosphere and lower thermosphere (MLT) region. To begin to address this issue, we present the first intercomparison among four such analyses, JAGUAR-DAS, MERRA-2, NAVGEM-HA, and WACCMX+DART, focusing on the Northern Hemisphere (NH) 2009–2010 winter that includes a major stratospheric sudden warming (SSW) in late January. This intercomparison examines the altitude, latitude, and time dependences of zonal mean zonal winds and temperatures among these four analyses over the 1 December 2009–31 March 2010 period, as well as latitude and altitude dependences of monthly mean amplitudes of the diurnal and semidiurnal migrating solar tides, the eastward propagating diurnal zonal wave number 3 nonmigrating tide, and traveling planetary waves associated with the quasi-5 day and quasi-2-day Rossby modes. Our results show generally good agreement among the four analyses up to the stratopause (~50 km altitude). Large discrepancies begin to emerge in the MLT owing to (1) differences in the types of satellite data assimilated by each system and (2) differences in the details of the global atmospheric models used by each analysis system. The results of this intercomparison provide initial estimates of uncertainty in analyses commonly used to constrain middle atmospheric meteorological variability in whole atmosphere model simulations.

2021 ◽  
Vol 21 (23) ◽  
pp. 17577-17605
Author(s):  
John P. McCormack ◽  
V. Lynn Harvey ◽  
Cora E. Randall ◽  
Nicholas Pedatella ◽  
Dai Koshin ◽  
...  

Abstract. Detailed meteorological analyses based on observations extending through the middle atmosphere (∼ 15 to 100 km altitude) can provide key information to whole atmosphere modeling systems regarding the physical mechanisms linking day-to-day changes in ionospheric electron density to meteorological variability near the Earth's surface. However, the extent to which independent middle atmosphere analyses differ in their representation of wave-induced coupling to the ionosphere is unclear. To begin to address this issue, we present the first intercomparison among four such analyses, JAGUAR-DAS, MERRA-2, NAVGEM-HA, and WACCMX+DART, focusing on the Northern Hemisphere (NH) 2009–2010 winter, which includes a major sudden stratospheric warming (SSW). This intercomparison examines the altitude, latitude, and time dependences of zonal mean zonal winds and temperatures among these four analyses over the 1 December 2009 to 31 March 2010 period, as well as latitude and altitude dependences of monthly mean amplitudes of the diurnal and semidiurnal migrating solar tides, the eastward-propagating diurnal zonal wave number 3 nonmigrating tide, and traveling planetary waves associated with the quasi-5 d and quasi-2 d Rossby modes. Our results show generally good agreement among the four analyses up to the stratopause (∼ 50 km altitude). Large discrepancies begin to emerge in the mesosphere and lower thermosphere owing to (1) differences in the types of satellite data assimilated by each system and (2) differences in the details of the global atmospheric models used by each analysis system. The results of this intercomparison provide initial estimates of uncertainty in analyses commonly used to constrain middle atmospheric meteorological variability in whole atmosphere model simulations.


2000 ◽  
Vol 18 (10) ◽  
pp. 1304-1315 ◽  
Author(s):  
D. Pancheva ◽  
P. Mukhtarov ◽  
N. J. Mitchell ◽  
A. G. Beard ◽  
H. G. Muller

Abstract. Meteor radars located in Bulgaria and the UK have been used to simultaneously measure winds in the mesosphere/lower-thermosphere region near 42.5°N, 26.6°E and 54.5°N, 3.9°W, respectively, over the period January 1991 to June 1992. The data have been used to investigate planetary waves and diurnal and semidiurnal tidal variability over the two sites. The tidal amplitudes at each site exhibit fluctuations as large as 300% on time scales from a few days to the intra-seasonal, with most of the variability being at intra-seasonal scales. Spectral and cross-wavelet analysis reveals closely related tidal variability over the two sites, indicating that the variability occurs on spatial scales large compared to the spacing between the two radars. In some, but not all, cases, periodic variability of tidal amplitudes is associated with simultaneously present planetary waves of similar period, suggesting the variability is a consequence of non-linear interaction. Calculation of the zonal wave number of a number of large amplitude planetary waves suggests that during summer 1991 the 2-day wave had a zonal wave number of 3, but that during January–February 1991 it had a zonal wave number of 4.Key words: Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides)


2019 ◽  
Vol 5 (4) ◽  
pp. 64-72
Author(s):  
Andrey Koval

Numerical simulation has been used to examine the effect of changes in solar activity (SA) in the thermosphere on amplitudes of long-period planetary waves (PW) for the winter period in the Northern Hemisphere. The model of the middle and upper atmosphere (MUAM) is used. It allows simulations of general atmospheric circulation at altitudes 0–300 km. In order to reproduce SA changes, different values of the solar radio flux at a wavelength of 10.7 cm at an altitude of more than 100 km are set in the MUAM radiation block. To take into account the effect of charged particles in the ionosphere on the neutral gas dynamics, ionospheric conductivities for different SA levels are included in MUAM. To improve the statistical reliability of the results, two ensembles of model simulations consisting of 16 runs corresponding to the minimum and maximum SA have been obtained. The statistical confidence of average differences in PW amplitudes between high and low SA has been calculated. The results are shown to be reliable in almost the entire altitude range 0–300 km. Results of the simulations have shown for the first time that statistically significant differences in amplitudes of long-period PWs can reach 10–15 % in the middle atmosphere of the Northern Hemisphere, depending on the zonal wave number. At the same time, reflection of PWs at altitudes of lower thermosphere has a significant effect on the PW structure in the middle atmosphere.


2019 ◽  
Vol 5 (4) ◽  
pp. 53-59
Author(s):  
Andrey Koval

Numerical simulation has been used to examine the effect of changes in solar activity (SA) in the thermosphere on amplitudes of long-period planetary waves (PW) for the winter period in the Northern Hemisphere. The model of the middle and upper atmosphere (MUAM) is used. It allows simulations of general atmospheric circulation at altitudes 0–300 km. In order to reproduce SA changes, different values of the solar radio flux at a wavelength of 10.7 cm at an altitude of more than 100 km are set in the MUAM radiation block. To take into account the effect of charged particles in the ionosphere on the neutral gas dynamics, ionospheric conductivities for different SA levels are included in MUAM. To improve the statistical reliability of the results, two ensembles of model simulations consisting of 16 runs corresponding to the minimum and maximum SA have been obtained. The statistical confidence of average differences in PW amplitudes between high and low SA has been calculated. The results are shown to be reliable in almost the entire altitude range 0–300 km. Results of the simulations have shown for the first time that statistically significant differences in amplitudes of long-period PWs can reach 10–15 % in the middle atmosphere of the Northern Hemisphere, depending on the zonal wave number. At the same time, reflection of PWs at altitudes of lower thermosphere has a significant effect on the PW structure in the middle atmosphere.


2021 ◽  
Author(s):  
Michal Kozubek ◽  
Peter Krizan

<p>An exceptionally strong sudden stratospheric warming (SSW) in the Southern Hemisphere (SH) during September 2019 was observed. Because SSW in the SH is very rare, comparison with the only recorded major SH SSW is done. According to World Meteorological Organization (WMO) definition, the SSW in 2019 has to be classified as minor. The cause of SSW in 2002 was very strong activity of stationary planetary wave with zonal wave-number (ZW) 2, which reached its maximum when the polar vortex split into two circulations with polar temperature enhancement by 30 K/week and it penetrated deeply to the lower stratosphere and upper troposphere. On the other hand, the minor SSW in 2019 involved an exceptionally strong wave-1 planetary wave and a large polar temperature enhancement by 50.8 K/week, but it affected mainly the middle and upper stratosphere. The strongest SSW in the Northern Hemisphere was observed in 2009. This study provides comparison of two strongest SSW in the SH and the strongest SSW in the NH to show difference between two hemispheres and possible impact to the lower or higher layers.</p>


2008 ◽  
Vol 26 (11) ◽  
pp. 3557-3570 ◽  
Author(s):  
A. Belova ◽  
S. Kirkwood ◽  
D. Murtagh ◽  
N. Mitchell ◽  
W. Singer ◽  
...  

Abstract. A number of studies have shown that 5-day planetary waves modulate noctilucent clouds and the closely related Polar Mesosphere Summer Echoes (PMSE) at the summer mesopause. Summer stratospheric winds should inhibit wave propagation through the stratosphere and, although some numerical models (Geisler and Dickinson, 1976) do show a possibility for upward wave propagation, it has also been suggested that the upward propagation may in practice be confined to the winter hemisphere with horizontal propagation of the wave from the winter to the summer hemisphere at mesosphere heights causing the effects observed at the summer mesopause. It has further been proposed (Garcia et al., 2005) that 5-day planetary waves observed in the summer mesosphere could be excited in-situ by baroclinic instability in the upper mesosphere. In this study, we first extract and analyze 5-day planetary wave characteristics on a global scale in the middle atmosphere (up to 54 km in temperature, and up to 68 km in ozone concentration) using measurements by the Odin satellite for selected days during northern hemisphere summer from 2003, 2004, 2005 and 2007. Second, we show that 5-day temperature fluctuations consistent with westward-traveling 5-day waves are present at the summer mesopause, using local ground-based meteor-radar observations. Finally we examine whether any of three possible sources of the detected temperature fluctuations at the summer mesopause can be excluded: upward propagation from the stratosphere in the summer-hemisphere, horizontal propagation from the winter-hemisphere or in-situ excitation as a result of the baroclinic instability. We find that in one case, far from solstice, the baroclinic instability is unlikely to be involved. In one further case, close to solstice, upward propagation in the same hemisphere seems to be ruled out. In all other cases, all or any of the three proposed mechanisms are consistent with the observations.


2007 ◽  
Vol 25 (8) ◽  
pp. 1767-1778 ◽  
Author(s):  
S. B. Malinga ◽  
J. M. Ruohoniemi

Abstract. Data from the Super Dual Radar Network (SuperDARN) radars for 2002 were used to study the behaviour of the quasi-two-day wave (QTDW) in the Northern Hemisphere auroral zone. The period of the QTDW is observed to vary in the range of ~42–56 h, with the most dominant period being ~48 h and secondary peaks at ~42- and ~52-h. The spectral power shows a seasonal variation with a peak power (max~70) in summer. The power shows variations of several days and there is also evidence of changes in wave strength with longitude. The 42-h and the 48-h components tend to be strongly correlated in summer. The onset of enhanced wave activity tends to coincide with the westward acceleration of the zonal mean flow and occurs at a time of strong southward meridional flow. The most frequent instantaneous hourly period is in the 40 to 50 h period band, in line with the simultaneous dominance of the 42-h and the 48-h components. The wave numbers are less variable and are around −2 to −4 during times of strong wave activity. For a period of ~48 h, the zonal wave number is about −3 to −4, using a negative value to indicate westward propagating waves. The 42-h and the 52-h components cover a wider band in the −4 to 1 range. The wide zonal wave number spectrum in our results may account for the observed longitudinal variation in the spectral power of the wave.


Sign in / Sign up

Export Citation Format

Share Document