scholarly journals Five-day planetary waves in the middle atmosphere from Odin satellite data and ground-based instruments in Northern Hemisphere summer 2003, 2004, 2005 and 2007

2008 ◽  
Vol 26 (11) ◽  
pp. 3557-3570 ◽  
Author(s):  
A. Belova ◽  
S. Kirkwood ◽  
D. Murtagh ◽  
N. Mitchell ◽  
W. Singer ◽  
...  

Abstract. A number of studies have shown that 5-day planetary waves modulate noctilucent clouds and the closely related Polar Mesosphere Summer Echoes (PMSE) at the summer mesopause. Summer stratospheric winds should inhibit wave propagation through the stratosphere and, although some numerical models (Geisler and Dickinson, 1976) do show a possibility for upward wave propagation, it has also been suggested that the upward propagation may in practice be confined to the winter hemisphere with horizontal propagation of the wave from the winter to the summer hemisphere at mesosphere heights causing the effects observed at the summer mesopause. It has further been proposed (Garcia et al., 2005) that 5-day planetary waves observed in the summer mesosphere could be excited in-situ by baroclinic instability in the upper mesosphere. In this study, we first extract and analyze 5-day planetary wave characteristics on a global scale in the middle atmosphere (up to 54 km in temperature, and up to 68 km in ozone concentration) using measurements by the Odin satellite for selected days during northern hemisphere summer from 2003, 2004, 2005 and 2007. Second, we show that 5-day temperature fluctuations consistent with westward-traveling 5-day waves are present at the summer mesopause, using local ground-based meteor-radar observations. Finally we examine whether any of three possible sources of the detected temperature fluctuations at the summer mesopause can be excluded: upward propagation from the stratosphere in the summer-hemisphere, horizontal propagation from the winter-hemisphere or in-situ excitation as a result of the baroclinic instability. We find that in one case, far from solstice, the baroclinic instability is unlikely to be involved. In one further case, close to solstice, upward propagation in the same hemisphere seems to be ruled out. In all other cases, all or any of the three proposed mechanisms are consistent with the observations.

2021 ◽  
Author(s):  
Haruka Okui ◽  
Kaoru Sato ◽  
Dai Koshin ◽  
Shingo Watanabe

<p>After several recent stratospheric sudden warming (SSW) events, the stratopause disappeared and reformed at a higher altitude, forming an elevated stratopause (ES). The relative roles of atmospheric waves in the mechanism of ES formation are still not fully understood. We performed a hindcast of the 2018/19 SSW event using a gravity-wave (GW) permitting general circulation model containing the mesosphere and lower thermosphere (MLT), and analyzed dynamical phenomena throughout the entire middle atmosphere. An ES formed after the major warming on 1 January 2019. There was a marked temperature maximum in the polar upper mesosphere around 28 December 2018 prior to the disappearance of the descending stratopause associated with the SSW. This temperature structure with two maxima in the vertical is referred to as a double stratopause (DS). We showed that adiabatic heating from the residual circulation driven by GW forcing (GWF) causes barotropic and/or baroclinic instability before DS formation, causing in situ generation of planetary waves (PWs). These PWs propagate into the MLT and exert negative forcing, which contributes to DS formation. Both negative GWF and PWF above the recovered eastward jet play crucial roles in ES formation. The altitude of the recovered eastward jet, which regulates GWF and PWF height, is likely affected by the DS structure. Simple vertical propagation from the lower atmosphere is insufficient to explain the presence of the GWs observed in this event.</p>


The dynamics of wave propagation and wave transport are reviewed for vertically propagating, forced, planetary scale waves in the middle atmosphere. Such waves can be divided into two major classes: extratropical planetary waves and equatorial waves. The most important waves of the former class are quasi-stationary Rossby modes of zonal wave numbers 1 and 2 (1 or 2 waves around a latitude circle), which propagate vertically only during the w inter season when the m ean winds are westerly. These modes transport heat and ozone towards the poles, thus maintaining the mean temperature above its radiative equilibrium value in high latitudes and producing the high latitude ozone maximum . It is shown that these wave transport processes depend on wave transience and wave dam ping. The precise form of this dependency is illustrated for transport of a strongly stratified tracer by small amplitude planetary waves. The observed equatorial wave modes are of two types: an eastward propagating Kelvin m ode and a westward propagating mixed Rossby—gravity mode. These modes are therm ally damped in the stratosphere where they interact with the mean flow to produce eastward and westward accelerations, respectively. It is shown tha t in the absence of mechanical dissipation this wave—mean flow interaction is caused by the vertical divergence of a wave ‘radiation stress’. This wave—mean flow interaction process is responsible for producing the well known equatorial quasi-biennial oscillation.


2007 ◽  
Vol 7 (1) ◽  
pp. 183-200 ◽  
Author(s):  
Q. Li ◽  
H.-F. Graf ◽  
M. A. Giorgetta

Abstract. The probability density on a height-meridional plane of negative refractive index squared f(nk2<0) is introduced as a new analysis tool to investigate the climatology of the propagation conditions of stationary planetary waves based on NCEP/NCAR reanalysis data for 44 Northern Hemisphere boreal winters (1958–2002). This analysis addresses the control of the atmospheric state on planetary wave propagation. It is found that not only the variability of atmospheric stability with altitudes, but also the variability with latitudes has significant influence on planetary wave propagation. Eliassen-Palm flux and divergence are also analyzed to investigate the eddy activities and forcing on zonal mean flow. Only the ultra-long planetary waves with zonal wave number 1, 2 and 3 are investigated. In Northern Hemisphere winter the atmosphere shows a large possibility for stationary planetary waves to propagate from the troposphere to the stratosphere. On the other hand, waves induce eddy momentum flux in the subtropical troposphere and eddy heat flux in the subpolar stratosphere. Waves also exert eddy momentum forcing on the mean flow in the troposphere and stratosphere at middle and high latitudes. A similar analysis is also performed for stratospheric strong and weak polar vortex regimes, respectively. Anomalies of stratospheric circulation affect planetary wave propagation and waves also play an important role in constructing and maintaining of interannual variations of stratospheric circulation.


2021 ◽  
Author(s):  
Hye-Yeong Chun ◽  
Byeong-Gwon Song ◽  
In-Sun Song

&lt;p&gt;Large-scale atmospheric circulation has been represented mostly by interaction between the mean flow and planetary waves (PWs). Although the importance of gravity waves (GWs) has been recognized for long time, contribution of GWs to the large-scale circulation is receiving more attention recently, with conjunction to GW drag (GWD) parameterizations for climate and global weather forecasting models that extend to the middle atmosphere. As magnitude of GWD increases with height significantly, circulations in the middle atmosphere are determined largely by interactions among the mean flow, PWs and GWs. Classical wave theory in the middle atmosphere has been represented mostly by the Transformed Eulerian Mean (TEM) equation, which include PW and GW forcing separately to the mean flow. Recently, increasing number of studies revealed that forcing by combined PWs and GWs is the same, regardless of different PW and GW forcings, implying a compensation between PWs and GWs forcing. There are two ways for GWs to influence on PWs: (i) changing the mean flow that either influences on waveguide of PWs or induces baroclinic/brotropic instabilities to generate in situ PWs, and (ii) generating PWs as a source of potential vorticity (PV) equation when asymmetric components of GWD exist. The fist mechanism has been studies extensively recently associated with stratospheric sudden warmings (SSWs) that are involved large amplitude PWs and GWD. The second mechanism represents more directly the relationship between PWs and GWs, which is essential to understand the dynamics in the middle atmosphere completely (among the mean flow, PWs and GWs). In this talk, a recently reported result of the generation of PWs by GWs associated with the strongest vortex split-type SSW event occurred in January 2009 (Song et al. 2020, JAS) is presented focusing on the second mechanism.&amp;#160;&amp;#160;&lt;/p&gt;


2019 ◽  
Vol 5 (4) ◽  
pp. 64-72
Author(s):  
Andrey Koval

Numerical simulation has been used to examine the effect of changes in solar activity (SA) in the thermosphere on amplitudes of long-period planetary waves (PW) for the winter period in the Northern Hemisphere. The model of the middle and upper atmosphere (MUAM) is used. It allows simulations of general atmospheric circulation at altitudes 0–300 km. In order to reproduce SA changes, different values of the solar radio flux at a wavelength of 10.7 cm at an altitude of more than 100 km are set in the MUAM radiation block. To take into account the effect of charged particles in the ionosphere on the neutral gas dynamics, ionospheric conductivities for different SA levels are included in MUAM. To improve the statistical reliability of the results, two ensembles of model simulations consisting of 16 runs corresponding to the minimum and maximum SA have been obtained. The statistical confidence of average differences in PW amplitudes between high and low SA has been calculated. The results are shown to be reliable in almost the entire altitude range 0–300 km. Results of the simulations have shown for the first time that statistically significant differences in amplitudes of long-period PWs can reach 10–15 % in the middle atmosphere of the Northern Hemisphere, depending on the zonal wave number. At the same time, reflection of PWs at altitudes of lower thermosphere has a significant effect on the PW structure in the middle atmosphere.


2019 ◽  
Vol 5 (4) ◽  
pp. 53-59
Author(s):  
Andrey Koval

Numerical simulation has been used to examine the effect of changes in solar activity (SA) in the thermosphere on amplitudes of long-period planetary waves (PW) for the winter period in the Northern Hemisphere. The model of the middle and upper atmosphere (MUAM) is used. It allows simulations of general atmospheric circulation at altitudes 0–300 km. In order to reproduce SA changes, different values of the solar radio flux at a wavelength of 10.7 cm at an altitude of more than 100 km are set in the MUAM radiation block. To take into account the effect of charged particles in the ionosphere on the neutral gas dynamics, ionospheric conductivities for different SA levels are included in MUAM. To improve the statistical reliability of the results, two ensembles of model simulations consisting of 16 runs corresponding to the minimum and maximum SA have been obtained. The statistical confidence of average differences in PW amplitudes between high and low SA has been calculated. The results are shown to be reliable in almost the entire altitude range 0–300 km. Results of the simulations have shown for the first time that statistically significant differences in amplitudes of long-period PWs can reach 10–15 % in the middle atmosphere of the Northern Hemisphere, depending on the zonal wave number. At the same time, reflection of PWs at altitudes of lower thermosphere has a significant effect on the PW structure in the middle atmosphere.


2021 ◽  
Author(s):  
John P. McCormack ◽  
V. Lynn Harvey ◽  
Nicholas Pedatella ◽  
Dai Koshin ◽  
Kaoru Sato ◽  
...  

Abstract. Detailed meteorological analyses based on observations extending through the middle atmosphere (~15–100 km altitude) can provide key information to whole atmosphere modelling systems regarding the physical mechanisms linking day-to-day changes in ionospheric electron density to meteorological variability near the Earth’s surface. It is currently unclear how middle atmosphere analyses produced by various research groups consistently represent the wide range of proposed linking mechanisms involving migrating and non-migrating tides, planetary waves, gravity waves, and their impact on the zonal mean state in the mesosphere and lower thermosphere (MLT) region. To begin to address this issue, we present the first intercomparison among four such analyses, JAGUAR-DAS, MERRA-2, NAVGEM-HA, and WACCMX+DART, focusing on the Northern Hemisphere (NH) 2009–2010 winter that includes a major stratospheric sudden warming (SSW) in late January. This intercomparison examines the altitude, latitude, and time dependences of zonal mean zonal winds and temperatures among these four analyses over the 1 December 2009–31 March 2010 period, as well as latitude and altitude dependences of monthly mean amplitudes of the diurnal and semidiurnal migrating solar tides, the eastward propagating diurnal zonal wave number 3 nonmigrating tide, and traveling planetary waves associated with the quasi-5 day and quasi-2-day Rossby modes. Our results show generally good agreement among the four analyses up to the stratopause (~50 km altitude). Large discrepancies begin to emerge in the MLT owing to (1) differences in the types of satellite data assimilated by each system and (2) differences in the details of the global atmospheric models used by each analysis system. The results of this intercomparison provide initial estimates of uncertainty in analyses commonly used to constrain middle atmospheric meteorological variability in whole atmosphere model simulations.


2020 ◽  
Author(s):  
Christian Rolf ◽  
Felix Plöger ◽  
Martina Krämer ◽  
Martin Riese

&lt;p&gt;Water vapor is one of the most important greenhouse gases in the Earth&amp;#8217;s atmosphere. Due to the high sensitivity of atmospheric radiative forcing to changes in greenhouse gases in the cold upper troposphere and lower stratosphere (UTLS) region, even small variations in water vapor in the lower LS are an important source of the decadal variability of the surface temperature. This implies the need for a detailed understanding of the observed water vapor variability in the UTLS and their underlying processes.&lt;/p&gt;&lt;p&gt;Isentropic transport of water vapor due to planetary waves and their breaking provides a mechanism for bringing moist tropical tropospheric air into the dry lower extra-tropical stratosphere (exLS, see e.g. McIntyre and Palmer, 1983). Uplifted moist air masses by the Asian and American monsoons at the sub-tropical jet generate maximum water vapor concentrations in the summer/fall season. This water vapor maximum coincides with a maximum in planetary wave breaking in the northern hemisphere lower stratosphere and thus subsequent horizontal poleward transport. This transport serves as the dominant pathway to moisten the exLS in boreal summer (e.g. Ploeger et al., 2013 , Rolf et al. 2018).&lt;/p&gt;&lt;p&gt;We investigate this transport pathway with measurements to better understand the water vapor distribution and their annual cycle in the exLS. Here, we use in-situ measurements of water vapor obtained with the FISH instrument (Fast In-situ Stratospheric Hygrometer) during the aircraft field campaigns TACTS in August/ September 2012 and WISE in September/October 2017. Water vapor observations with the AURA MLS satellite instrument encompassing the entire exLS are used to put the temporal and spatial limited in-situ observations into a larger perspective. A very good agreement between the median of the in-situ water vapor distribution and the satellite observation is found, which shows that the in-situ observations are representative for the water vapor distribution of the exLS. Isentropic transport is shown to be dependent on the planetary wave activity by using the divergence of the Eliassen-Palm flux. Together with an extensive backward trajectory analysis we show that the isentropic transport is the dominant pathway of moistening the exLS up to 420 K potential temperature.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;References&lt;/strong&gt;&lt;/p&gt;&lt;ul&gt;&lt;li&gt; &lt;p&gt;McIntyre, M. E., and T. N. Palmer (1983), Breaking planetary waves in the stratosphere, Nature, 305, 593-600.&lt;/p&gt; &lt;/li&gt; &lt;li&gt; &lt;p&gt;Ploeger, F., G&amp;#252;nther, G., Konopka, P., Fueglistaler, S., M&amp;#252;ller, R., Hoppe, C., Kunz, A., Spang, R., Groo&amp;#223;, J.&amp;#8208;U., and Riese, M. ( 2013), Horizontal water vapor transport in the lower stratosphere from subtropics to high latitudes during boreal summer, &lt;em&gt;J. Geophys. Res. Atmos.&lt;/em&gt;, 118, 8111&amp;#8211; 8127, doi:&lt;span&gt;&lt;/span&gt;.&lt;/p&gt; &lt;/li&gt; &lt;li&gt; &lt;p&gt;Rolf, C., Vogel, B., Hoor, P., Afchine, A., G&amp;#252;nther, G., Kr&amp;#228;mer, M., M&amp;#252;ller, R., M&amp;#252;ller, S., Spelten, N., and Riese, M.: Water vapor increase in the lower stratosphere of the Northern Hemisphere due to the Asian monsoon anticyclone observed during the TACTS/ESMVal campaigns, Atmos. Chem. Phys., 18, 2973&amp;#8211;2983, https://doi.org/10.5194/acp-18-2973-2018, 2018.&lt;/p&gt; &lt;/li&gt; &lt;/ul&gt;


Sign in / Sign up

Export Citation Format

Share Document