scholarly journals The diurnal and seasonal variability of ice nucleating particles at the High Altitude Station Jungfraujoch (3580 m a.s.l.), Switzerland

2021 ◽  
Author(s):  
Cyril Brunner ◽  
Benjamin Tobias Brem ◽  
Martine Collaud Coen ◽  
Franz Conen ◽  
Martin Steinbacher ◽  
...  

Abstract. Cloud radiative properties, cloud lifetime, and precipitation initiation are strongly influenced by the cloud phase. Between ~ 235 and 273 K, ice nucleating particles (INPs) are responsible for the initial phase transition from the liquid to the ice phase in cloud hydrometeors. This study analyzes immersion-mode INP concentrations measured at 243 K at the High Altitude Research Station Jungfraujoch (3580 m a.s.l.) between February 2020 and January 2021, thereby presenting the longest continuous, high-resolution (20 min) data set of online INP measurements to date. The high time resolution and continuity allow to study the seasonal and the diurnal variability of INPs. After exclusion of special events, like Saharan dust events (SDEs), we found a seasonal cycle of INPs, highest in April (median in spring 3.1 INP std L−1), followed by summer (median: 1.6 INP std L−1) and lowest in fall and winter (median: 0.5 INP std L−1 and 0.7 INP std L−1, respectively). Pollen or subpollen particles were deemed unlikely to be responsible for elevated INP concentrations in spring and summer, as periods with high pollen loads from nearby measurement stations do not coincide with the periods of high INP concentrations. Furthermore, for days when the site was purely in the free troposphere (FT), no diurnal cycle in INP concentrations was observed, while days with boundary layer intrusions (BLI) showed a diurnal cycle. The seasonal and diurnal variability of INPs during periods excluding SDEs is with a factor of 7 and 3.3, respectively, significantly lower than the overall variability observed in INP concentration including SDEs of more than three orders of magnitude, when peak values result from SDEs. The median INP concentration over the analyzed 12 months was 1.2 INP std L−1 for FT periods excluding SDEs, and 1.4 INP std L−1 for both FT and BLI, and incl. SDEs, reflecting that despite SDEs showing strong but comparatively brief INP signals, they have a minor impact on the observed annual median INP concentration.

2018 ◽  
Vol 18 (13) ◽  
pp. 9457-9473 ◽  
Author(s):  
Vincent Noel ◽  
Hélène Chepfer ◽  
Marjolaine Chiriaco ◽  
John Yorks

Abstract. We document, for the first time, how detailed vertical profiles of cloud fraction (CF) change diurnally between 51∘ S and 51∘ N, by taking advantage of 15 months of measurements from the Cloud-Aerosol Transport System (CATS) lidar on the non-sun-synchronous International Space Station (ISS). Over the tropical ocean in summer, we find few high clouds during daytime. At night they become frequent over a large altitude range (11–16 km between 22:00 and 04:00 LT). Over the summer tropical continents, but not over ocean, CATS observations reveal mid-level clouds (4–8 km above sea level or a.s.l.) persisting all day long, with a weak diurnal cycle (minimum at noon). Over the Southern Ocean, diurnal cycles appear for the omnipresent low-level clouds (minimum between noon and 15:00) and high-altitude clouds (minimum between 08:00 and 14:00). Both cycles are time shifted, with high-altitude clouds following the changes in low-altitude clouds by several hours. Over all continents at all latitudes during summer, the low-level clouds develop upwards and reach a maximum occurrence at about 2.5 km a.s.l. in the early afternoon (around 14:00). Our work also shows that (1) the diurnal cycles of vertical profiles derived from CATS are consistent with those from ground-based active sensors on a local scale, (2) the cloud profiles derived from CATS measurements at local times of 01:30 and 13:30 are consistent with those observed from CALIPSO at similar times, and (3) the diurnal cycles of low and high cloud amounts (CAs) derived from CATS are in general in phase with those derived from geostationary imagery but less pronounced. Finally, the diurnal variability of cloud profiles revealed by CATS strongly suggests that CALIPSO measurements at 01:30 and 13:30 document the daily extremes of the cloud fraction profiles over ocean and are more representative of daily averages over land, except at altitudes above 10 km where they capture part of the diurnal variability. These findings are applicable to other instruments with local overpass times similar to CALIPSO's, such as all the other A-Train instruments and the future EarthCARE mission.


2021 ◽  
Author(s):  
Nabil Deabji ◽  
Khanneh Wadinga Fomba ◽  
Eduardo José dos Santos Souza ◽  
Hartmut Herrmann

<p>Aerosol particles are important constituents of the atmosphere due to their role in controlling climate-related processes. In addition, their impacts on air quality and human health make it essential to study. However, the characterization and the identification of natural and anthropogenic atmospheric particles can be challenging due to the complex mixture occurring during atmospheric transport. Background locations such as high-altitude sites provide valuable infrastructure for obtaining representative data for understanding various pathways for aerosol interactions useful in assessing atmospheric composition. However, information about aerosol characteristics at high-altitude in the African regions and their relation to urban aerosol composition is still not well understood. In the present study, PM<sub>10</sub> and PM<sub>2.5</sub> particulate matter was characterized at two different sites in the North African region of Morocco. A background site located at the newly established AM5 research station in the Middle Atlas region at an altitude of 2100 m and an urban site situated in a polluted city, Fez. The goal was to determine chemical components, evaluate Saharan dust’s role on the PM10 concentrations between the sites, and assess the impact of urban pollution on background aerosol composition. The results indicate that the background aerosol composition is influenced by both regional and trans-regional transport. Despite the site's proximity to the Sahara Desert, the deserts influence on the atmospheric composition was observed for only 22% of the time and this was mainly seasonal. Marine air masses were more dominant with a mixture of sea salt and polluted aerosol from the coastal regions especially during wintertime. Furthermore, high concentrations of mineral dust were observed during the daytime due to the resuspension of road dust. At the same time, an increase of PAHs and anthropogenic metals such as Pb, Ni, and Cu were found during the nighttime because of the boundary layer variation. The Fez's urban site is characterized by a high contribution of elemental carbon (6%) and organic biomass tracers (3%) such as Levoglucosane and 4-nitrophenol.</p>


2020 ◽  
Author(s):  
Simone M. Pieber ◽  
Béla Tuzson ◽  
Stephan Henne ◽  
Ute Karstens ◽  
Dominik Brunner ◽  
...  

<p>Evaluating atmospheric transport simulations against observations helps refining bottom-up estimates of greenhouse gas fluxes and identifying gaps in our understanding of regional and category-specific contributions to atmospheric mole fractions. This insight is critical in the efforts to mitigate anthropogenic environmental impact. Beside total mole fractions, stable isotope ratios provide further constraints on source-sink processes [1-3].</p><p>Here, we present two receptor-oriented model simulations for carbon dioxide (CO<sub>2</sub>) mole fraction and δ<sup>13</sup>C-CO<sub>2</sub> stable isotope ratios for a nine year period (2009-2017) at the High Altitude Research Station Jungfraujoch (Switzerland, 3580 m asl). The model simulations of CO<sub>2</sub> were performed on a 3-hourly time-resolution with two backward Lagrangian particle dispersion models driven by two different numerical weather forecast fields: FLEXPART-COSMO and STILT-ECMWF. Anthropogenic CO<sub>2</sub> fluxes were based on the EDGAR v4.3 emissions inventory aggregated into 14 source categories representing fossil and biogenic fuel uses as well as emissions from cement production. Biospheric CO<sub>2</sub> fluxes representing the photosynthetic uptake and respiration of 8 plant functional types were based on the Vegetation Photosynthesis and Respiration Model (VPRM). The simulated CO<sub>2</sub> emissions per source and sink category were weighted with category-specific δ<sup>13</sup>C-CO<sub>2</sub> signatures from published experimental studies. Background CO<sub>2</sub> values at the boundaries of both model domains were taken from global model simulations and the corresponding δ<sup>13</sup>C-CO<sub>2</sub> values were constructed as suggested in Ref. [3]. We compare the simulations to a unique data set of continuous in-situ observations of CO<sub>2</sub> mole fractions and δ<sup>13</sup>C-CO<sub>2</sub> stable isotope ratios by quantum cascade laser absorption spectroscopy as described in previous work [1, 4-5], available for the whole nine year period at the site.</p><p>The simulated atmospheric CO<sub>2</sub> and δ<sup>13</sup>C-CO<sub>2</sub> time-series are in good agreement with the observations and capture the observed variability at the models' 3-hourly time-resolution. This allows for an in-depth evaluation of the contribution of different CO<sub>2</sub> emission sources and for an allocation of source regions when Jungfraujoch is influenced by air masses from the planetary boundary layer. In brief, the receptor-oriented model simulations suggest that anthropogenic CO<sub>2</sub> contributions are primarily of fossil origin (90%). Anthropogenic emissions contribute between 60% in February, and 20% in July/August, to the CO<sub>2</sub> enhancements observed at Jungfraujoch. The remaining fraction is due to biosphere respiration, which thus largely dominates emissions during the summer season. However, intense photosynthetic CO<sub>2</sub> uptake during June, July and August roughly outweighs CO<sub>2</sub> contributions from anthropogenic activities and biosphere respiration at JFJ.</p><p> </p><p> </p><p>REFERENCES</p><p>[1] Tuzson et al., 2011. ACP, 11, 1685</p><p>[2] Röckmann et al., 2016. ACP, 16, 10469</p><p>[3] Vardag et al., 2016. Biogeosciences, 13, 4237</p><p>[4] Tuzson et al., 2008. Appl. Phys. B, 92, 451</p><p>[5] Sturm et al., 2013. AMT 6, 1659</p>


2017 ◽  
Vol 17 (24) ◽  
pp. 15199-15224 ◽  
Author(s):  
Larissa Lacher ◽  
Ulrike Lohmann ◽  
Yvonne Boose ◽  
Assaf Zipori ◽  
Erik Herrmann ◽  
...  

Abstract. In this work we describe the Horizontal Ice Nucleation Chamber (HINC) as a new instrument to measure ambient ice-nucleating particle (INP) concentrations for conditions relevant to mixed-phase clouds. Laboratory verification and validation experiments confirm the accuracy of the thermodynamic conditions of temperature (T) and relative humidity (RH) in HINC with uncertainties in T of ±0.4 K and in RH with respect to water (RHw) of ±1.5 %, which translates into an uncertainty in RH with respect to ice (RHi) of ±3.0 % at T > 235 K. For further validation of HINC as a field instrument, two measurement campaigns were conducted in winters 2015 and 2016 at the High Altitude Research Station Jungfraujoch (JFJ; Switzerland, 3580 m a. s. l. ) to sample ambient INPs. During winters 2015 and 2016 the site encountered free-tropospheric conditions 92 and 79 % of the time, respectively. We measured INP concentrations at 242 K at water-subsaturated conditions (RHw = 94 %), relevant for the formation of ice clouds, and in the water-supersaturated regime (RHw = 104 %) to represent ice formation occurring under mixed-phase cloud conditions. In winters 2015 and 2016 the median INP concentrations at RHw = 94 % was below the minimum detectable concentration. At RHw = 104 %, INP concentrations were an order of magnitude higher, with median concentrations in winter 2015 of 2.8 per standard liter (std L−1; normalized to standard T of 273 K and pressure, p, of 1013 hPa) and 4.7 std L−1 in winter 2016. The measurements are in agreement with previous winter measurements obtained with the Portable Ice Nucleation Chamber (PINC) of 2.2 std L−1 at the same location. During winter 2015, two events caused the INP concentrations at RHw = 104 % to significantly increase above the campaign average. First, an increase to 72.1 std L−1 was measured during an event influenced by marine air, arriving at the JFJ from the North Sea and the Norwegian Sea. The contribution from anthropogenic or other sources can thereby not be ruled out. Second, INP concentrations up to 146.2 std L−1 were observed during a Saharan dust event. To our knowledge this is the first time that a clear enrichment in ambient INP concentration in remote regions of the atmosphere is observed during a time of marine air mass influence, suggesting the importance of marine particles on ice nucleation in the free troposphere.


2013 ◽  
Vol 6 (7) ◽  
pp. 1659-1671 ◽  
Author(s):  
P. Sturm ◽  
B. Tuzson ◽  
S. Henne ◽  
L. Emmenegger

Abstract. We present the continuous data record of atmospheric CO2 isotopes measured by laser absorption spectroscopy for an almost four year period at the High Altitude Research Station Jungfraujoch (3580 m a.s.l.), Switzerland. The mean annual cycles derived from data of December 2008 to September 2012 exhibit peak-to-peak amplitudes of 11.0 μmol mol−1 for CO2, 0.60‰ for δ13C and 0.81‰ for δ18O. The high temporal resolution of the measurements also allow us to capture variations on hourly and diurnal timescales. For CO2 the mean diurnal peak-to-peak amplitude is about 1 μmol mol−1 in spring, autumn and winter and about 2 μmol mol−1 in summer. The mean diurnal variability in the isotope ratios is largest during the summer months too, with an amplitude of about 0.1‰ both in the δ13C and δ18O, and a smaller or no discernible diurnal cycle during the other seasons. The day-to-day variability, however, is much larger and depends on the origin of the air masses arriving at Jungfraujoch. Backward Lagrangian particle dispersion model simulations revealed a close link between air composition and prevailing transport regimes and could be used to explain part of the observed variability in terms of transport history and influence region. A footprint clustering showed significantly different wintertime CO2, δ13C and δ18O values depending on the origin and surface residence times of the air masses. Several major updates on the instrument and the calibration procedures were performed in order to further improve the data quality. We describe the new measurement and calibration setup in detail and demonstrate the enhanced performance of the analyzer. A measurement precision of about 0.02‰ for both isotope ratios has been obtained for an averaging time of 10 min, while the accuracy was estimated to be 0.1‰, including the uncertainty of the calibration gases.


2017 ◽  
Vol 17 (11) ◽  
pp. 7035-7053 ◽  
Author(s):  
Sarah Taylor ◽  
Philip Stier ◽  
Bethan White ◽  
Stephan Finkensieper ◽  
Martin Stengel

Abstract. The variability of convective cloud spans a wide range of temporal and spatial scales and is of fundamental importance for global weather and climate systems. Datasets from geostationary satellite instruments such as the Spinning Enhanced Visible and Infrared Imager (SEVIRI) provide high-time-resolution observations across a large area. In this study we use data from SEVIRI to quantify the diurnal cycle of cloud top temperature within the instrument's field of view and discuss these results in relation to retrieval biases. We evaluate SEVIRI cloud top temperatures from the new CLAAS-2 (CLoud property dAtAset using SEVIRI, Edition 2) dataset against Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Results show a mean bias of +0.44 K with a standard deviation of 11.7 K, which is in agreement with previous validation studies. Analysis of the spatio-temporal distribution of these errors shows that absolute retrieval biases vary from less than 5 K over the southeast Atlantic Ocean up to 30 K over central Africa at night. Night- and daytime retrieval biases can also differ by up to 30 K in some areas, potentially contributing to biases in the estimated amplitude of the diurnal cycle. This illustrates the importance of considering spatial and diurnal variations in retrieval errors when using the CLAAS-2 dataset. Keeping these biases in mind, we quantify the seasonal, diurnal, and spatial variation of cloud top temperature across SEVIRI's field of view using the CLAAS-2 dataset. By comparing the mean diurnal cycle of cloud top temperature with the retrieval bias, we find that diurnal variations in the retrieval bias can be small but are often of the same order of magnitude as the amplitude of the observed diurnal cycle, indicating that in some regions the diurnal cycle apparent in the observations may be significantly impacted by diurnal variability in the accuracy of the retrieval. We show that the CLAAS-2 dataset can measure the diurnal cycle of cloud tops accurately in regions of stratiform cloud such as the southeast Atlantic Ocean and Europe, where cloud top temperature retrieval biases are small and exhibit limited spatial and temporal variability. Quantifying the diurnal cycle over the tropics and regions of desert is more difficult, as retrieval biases are larger and display significant diurnal variability. CLAAS-2 cloud top temperature data are found to be of limited skill in measuring the diurnal cycle accurately over desert regions. In tropical regions such as central Africa, the diurnal cycle can be described by the CLAAS-2 data to some extent, although retrieval biases appear to reduce the amplitude of the real diurnal cycle of cloud top temperatures. This is the first study to relate the diurnal variations in SEVIRI retrieval bias to observed diurnal cycles in cloud top temperature. Our results may be of interest to those in the observation and modelling communities when using cloud top properties data from SEVIRI, particularly for studies considering the diurnal cycle of convection.


2016 ◽  
Author(s):  
Sarah Taylor ◽  
Philip Stier ◽  
Bethan White ◽  
Stephan Finkensieper ◽  
Martin Stengel

Abstract. The variability of convective cloud spans a wide range of temporal and spatial scales and is of fundamental importance for global weather and climate systems. Datasets from geostationary satellite instruments such as SEVIRI provide high time resolution observations across a large area. In this study we use data from SEVIRI to quantify the diurnal cycle of cloud top temperature within the instrument's field of view and discuss these results in relation to retrieval biases inferred from a comparison against cloud top temperatures from CALIOP. We evaluate SEVIRI cloud top temperatures from the new CLAAS-2 (CLoud property dAtAset using SEVIRI, Edition 2) dataset against cloud top temperatures from CALIOP. Results show a mean bias of +0.44 K with a standard deviation of 11.7 K, which is in agreement with previous validation studies. The analysis of the spatiotemporal distribution of these errors shows that the absolute retrieval biases vary from less than 5 K over the southeast Atlantic Ocean up to 30 K over central Africa at night. Night and daytime retrieval biases can also differ by up to 30 K in some areas, potentially contributing to biases in the estimated amplitude of the diurnal cycle. This illustrates the importance of considering spatial and diurnal variations in retrieval errors when using the CLAAS-2 dataset. Keeping these biases in mind, we quantify the seasonal, diurnal and spatial variation of cloud top temperature across SEVIRI's field of view using the CLAAS-2 dataset. By comparing the mean diurnal cycle of cloud top temperature with the retrieval bias we find that diurnal variations in the retrieval bias can be small, but are often of the same order of magnitude as the amplitude of the observed diurnal cycle, indicating that in some regions the diurnal cycle apparent in the observations may be a significantly impacted by diurnal variability in the accuracy of the retrieval. We show that the CLAAS-2 dataset can measure the diurnal cycle of cloud tops accurately in regions of stratiform cloud such as the southeast Atlantic Ocean and Europe, where cloud top temperature retrieval biases are small and exhibit limited spatial and temporal variability. Quantifying the diurnal cycle over the tropics and regions of desert is more difficult, as retrieval biases are larger and display significant diurnal variability. CLAAS-2 cloud top temperature data are found to be of limited skill in measuring the diurnal cycle accurately over desert regions. In tropical regions such as Central Africa, the diurnal cycle can be described by the CLAAS-2 data to some extent, although retrieval biases appear to reduce the amplitude of the real diurnal cycle of cloud top temperatures. This is the first study to relate the diurnal variations in SEVIRI retrieval bias to observed diurnal cycles in cloud top temperature. Our results may be of interest to those in the observation and modelling communities when using cloud top properties data from SEVIRI, particularly for studies considering the diurnal cycle of convection.


2016 ◽  
Vol 16 (4) ◽  
pp. 2273-2284 ◽  
Author(s):  
I. Crawford ◽  
G. Lloyd ◽  
E. Herrmann ◽  
C. R. Hoyle ◽  
K. N. Bower ◽  
...  

Abstract. The fluorescent nature of aerosol at a high-altitude Alpine site was studied using a wide-band integrated bioaerosol (WIBS-4) single particle multi-channel ultraviolet – light-induced fluorescence (UV-LIF) spectrometer. This was supported by comprehensive cloud microphysics and meteorological measurements with the aims of cataloguing concentrations of bio-fluorescent aerosols at this high-altitude site and also investigating possible influences of UV–fluorescent particle types on cloud–aerosol processes. Analysis of background free tropospheric air masses, using a total aerosol inlet, showed there to be a minor increase in the fluorescent aerosol fraction during in-cloud cases compared to out-of-cloud cases. The size dependence of the fluorescent aerosol fraction showed the larger aerosol to be more likely to be fluorescent with 80 % of 10 μm particles being fluorescent. Whilst the fluorescent particles were in the minority (NFl∕NAll  =  0.27 ± 0.19), a new hierarchical agglomerative cluster analysis approach, Crawford et al. (2015) revealed the majority of the fluorescent aerosols were likely to be representative of fluorescent mineral dust. A minor episodic contribution from a cluster likely to be representative of primary biological aerosol particles (PBAP) was also observed with a wintertime baseline concentration of 0.1 ± 0.4 L−1. Given the low concentration of this cluster and the typically low ice-active fraction of studied PBAP (e.g. pseudomonas syringae), we suggest that the contribution to the observed ice crystal concentration at this location is not significant during the wintertime.


2019 ◽  
Author(s):  
Killian P. Brennan ◽  
Robert O. David ◽  
Nadine Borduas-Dedekind

Abstract. Ice nucleating particles (INPs) produce ice from supercooled water droplets through heterogeneous freezing in the atmosphere. Since the concentration of ice crystals affects the radiative properties of clouds as well as precipitation, constraining the liquid water to ice ratio could help reduce aerosol-cloud interaction uncertainties. INPs have been collected at the Jungfraujoch research station (at 3500 m a.s.l.) in central Switzerland; yet spatially diverse data on INP occurrence in the Swiss Alps are scarce and remain uncharacterized. We address this scarcity through our Swiss Alpine snow sample study which took place during the winter of 2018. We collected a total of 88 fallen snow samples across the Alps at different locations, altitudes, terrains, times since last snowfall and depths. The INP concentrations were measured using the homebuilt DRoplet Ice Nuclei Counter Zurich (DRINCZ) and were then compared to spatial, meteorological and physiochemical parameters. We also extend an alternative way of displaying frozen fraction (FF) versus temperature data through visualizing freezing temperatures as a boxplot to field collected samples. This plotting method displays the freezing temperature in one dimension, instead of the former two dimensions of FF vs temperature, allowing a condensed display of freezing temperature measurements. In the collected snow samples, large variability in INP occurrence was found, even for samples collected 10 m apart on a plain and 1 m apart in depth. Furthermore, undiluted samples had INP concentrations ranging between 1 and 100 INP ml−1 of snow water over a temperature range of −5 to −19 °C. From this field-collected data set, we parameterize the INP concentrations per milliliter of meltwater as a function of temperature with the following equation c*air (T)=e(−0.7T–7.05), comparing well with previously reported precipitation data presented in Petters and Wright, 2015. When assuming a cloud water content of 0.4 g−3 and a critical INP concentration for glaciation of 10 m−3, the majority of the snow precipitated from clouds with glaciation temperatures between −5 and −20 °C. Based on the observed variability in INP concentrations, we conclude that studies conducted at the high-altitude research station Jungfraujoch are representative for INP measurements in the Swiss Alps. Furthermore, the INP concentration precipitation estimates allow us to extrapolate the concentrations to a cloud frozen fraction. Indeed, this approach for estimating the liquid water to ice ratio in mixed phase clouds compares well with aircraft measurements, ground-based lidar and satellite retrievals of cloud frozen fractions. In all, the generated parameterization for INP concentrations in meltwater could help estimate cloud glaciation temperatures.


2017 ◽  
Author(s):  
Larissa Lacher ◽  
Ulrike Lohmann ◽  
Yvonne Boose ◽  
Assaf Zipori ◽  
Erik Herrmann ◽  
...  

Abstract. In this work we describe the Horizontal Ice Nucleation Chamber, HINC as a new instrument to measure ambient ice nucleating particle (INP) concentrations for conditions relevant to mixed-phase clouds. Laboratory verification and validation experiments confirm accuracy of the thermodynamic conditions of temperature (T) and relative humidity (RH) in HINC with uncertainties in temperature of ±0.4 K and in RH with respect to water (RHw) of ±1.5 %, which translates to an uncertainty in RH with respect to ice (RHi) of ±3.0 % at T > 235 K. For further validation of HINC as a field instrument, two measurement campaigns were conducted in winters 2015 and 2016 at the High Altitude Research Station Jungfraujoch (JFJ; Switzerland, 3580 m a.s.l.) to sample ambient INPs. During winters 2015 and 2016 the site encountered free tropospheric conditions 92 % and 79 % of the time respectively. We measured INP concentrations at 242 K at water sub-saturated conditions (RHw = 94 %), relevant for the formation of ice clouds, and in the water supersaturated regime (RHw = 103–104 %) to represent ice formation occurring under mixed-phase cloud conditions. In winter 2015 and 2016 the median INP concentrations at RHw = 94 % was below the minimum detectable concentration. At RHw = 104 %, INP concentrations were an order of magnitude higher, with median concentrations in winter 2015 of 2.8 per standard liter (stdL−1; normalized to standard temperature T = 273 K and pressure p = 1013 hPa) and 4.7 stdL−1 in winter 2016. The measurements are in agreement with previous winter measurements obtained with the Portable Ice Nucleation Chamber, PINC, of 2.2 stdL−1 at the same location. During winter 2015, two events caused the INP concentrations at RHw = 103–104 % to significantly increase above the campaign average. First, an increase to 72.1 stdL−1 was measured during an event influenced by marine air, coming from the Northern Sea and the Norwegian Sea. Second, INP concentrations up to 146.2 stdL−1 were observed during a Saharan dust event. To our knowledge this is the first time that a clear enrichment in ambient INP concentration is observed during a time of marine air mass influence, indicating the importance of marine particles on ice nucleation in the free troposphere.


Sign in / Sign up

Export Citation Format

Share Document