scholarly journals Supplementary material to "9-year trends of PM<sub>10 </sub>sources and oxidative potential in a rural background site in France"

Author(s):  
Lucille Joanna Borlaza ◽  
Samuël Weber ◽  
Anouk Marsal ◽  
Gaëlle Uzu ◽  
Véronique Jacob ◽  
...  
2021 ◽  
Author(s):  
Lucille Joanna Borlaza ◽  
Samuël Weber ◽  
Anouk Marsal ◽  
Gaëlle Uzu ◽  
Véronique Jacob ◽  
...  

Abstract. Long-term monitoring at sites with relatively low particulate pollution could provide an opportunity to identify changes in pollutant concentration and potential effects of current air quality policies. In this study, a 9-year sampling of PM10 (particles with an aerodynamic diameter below 10 µm) was performed in a rural background site in France from February 28, 2012 to December 22, 2020. The Positive Matrix Factorization (PMF) method was used to apportion sources of PM10 based on quantified chemical constituents and specific chemical tracers from collected filters. Oxidative potential (OP), an emerging health-metric that measures PM capability to potentially cause anti-oxidant imbalance in the lung, was also measured using two acellular assays: dithiothreitol (DTT) and ascorbic acid (AA). The contribution of PMF-resolved sources to OP were also estimated using multiple linear regression (MLR) analysis. In terms of mass contribution, the dominant sources are secondary aerosols (nitrate- and sulphate-rich), associated with long-range transport (LRT). However, in terms of OP contributions, the main drivers are traffic, mineral dust, and biomass burning factors. There is also some OP contribution apportioned to the sulphate- and nitrate-rich sources influenced by processes and aging during LRT that could have encouraged mixing with other anthropogenic sources. The study indicates much lower OP values than in urban areas. A substantial decrease (58 % reduction from year 2012 to 2020) in the mass contributions from the traffic factor was found, however, this is not clearly reflected in its OP contribution. Nevertheless, the findings in this long-term study in the OPE site could signal effectiveness of implemented emission control policies, as also seen in other long-term studies conducted in Europe, mainly for urban areas.


2001 ◽  
Vol 35 (10) ◽  
pp. 1853-1862 ◽  
Author(s):  
Andreas Limbeck ◽  
Hans Puxbaum ◽  
Luanne Otter ◽  
Mary C. Scholes

2019 ◽  
Vol 19 (16) ◽  
pp. 10537-10555 ◽  
Author(s):  
Simo Hakala ◽  
Mansour A. Alghamdi ◽  
Pauli Paasonen ◽  
Ville Vakkari ◽  
Mamdouh I. Khoder ◽  
...  

Abstract. Atmospheric aerosols have significant effects on human health and the climate. A large fraction of these aerosols originates from secondary new particle formation (NPF), where atmospheric vapors form small particles that subsequently grow into larger sizes. In this study, we characterize NPF events observed at a rural background site of Hada Al Sham (21.802∘ N, 39.729∘ E), located in western Saudi Arabia, during the years 2013–2015. Our analysis shows that NPF events occur very frequently at the site, as 73 % of all the 454 classified days were NPF days. The high NPF frequency is likely explained by the typically prevailing conditions of clear skies and high solar radiation, in combination with sufficient amounts of precursor vapors for particle formation and growth. Several factors suggest that in Hada Al Sham these precursor vapors are related to the transport of anthropogenic emissions from the coastal urban and industrial areas. The median particle formation and growth rates for the NPF days were 8.7 cm−3 s−1 (J7 nm) and 7.4 nm h−1 (GR7−12 nm), respectively, both showing highest values during late summer. Interestingly, the formation and growth rates increase as a function of the condensation sink, likely reflecting the common anthropogenic sources of NPF precursor vapors and primary particles affecting the condensation sink. A total of 76 % of the NPF days showed an unusual progression, where the observed diameter of the newly formed particle mode started to decrease after the growth phase. In comparison to most long-term measurements, the NPF events in Hada Al Sham are exceptionally frequent and strong both in terms of formation and growth rates. In addition, the frequency of the decreasing mode diameter events is higher than anywhere else in the world.


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 687 ◽  
Author(s):  
Radek Lhotka ◽  
Petra Pokorná ◽  
Naděžda Zíková

An increased burden due to polycyclic aromatic hydrocarbons (PAH) is a long-term air quality problem in Central and Eastern Europe. Extensive PAH monitoring has been implemented at the National Atmospheric Observatory Košetice (NAOK), a rural background site in the Czech Republic, as a representative for Central Europe. Data from NAOK are used for evaluation of PAH concentration trends and source apportionment. In total, concentrations of 14 PAHs in particulate matter (PM10) and in the gas phase between 2006 and 2016 were evaluated. The highest concentrations were measured at the beginning of the study period in 2006. Mean annual concentrations of benzo(a)pyrene, for example, showed a weak, however statistically significant decreasing trend. The positive matrix factorization (PMF) was used to determine the sources of PAHs at NAOK, with three factors resolved. The probable origin areas of PMF factors were identified by the conditional bivariate probability function (CBPF) and the potential source contribution function (PSCF) methods. The NAOK is affected by local sources of PAHs, as well as by regional and long-range transport. The PAH concentrations correlate negatively with industrial production and traffic intensity. High PAH emissions have been linked to local heating, suggesting that the planned replacement of obsolete combustion sources in the households could improve the overall air quality situation, not only with respect to PAHs.


Sign in / Sign up

Export Citation Format

Share Document