scholarly journals The sporadic sodium layer: a possible tracer for the conjunction between the upper and lower atmospheres

2021 ◽  
Vol 21 (15) ◽  
pp. 11927-11940
Author(s):  
Shican Qiu ◽  
Ning Wang ◽  
Willie Soon ◽  
Gaopeng Lu ◽  
Mingjiao Jia ◽  
...  

Abstract. In this research, we reveal the inter-connection between lightning strokes, reversal of the electric field, ionospheric disturbances, and a sodium layer (NaS), based on the joint observations by a temperature/wind (T/W, where the slash means “and”) lidar, an ionosonde, an atmospheric electric mill, a fluxgate magnetometer, and the World Wide Lightning Location Network (WWLLN). Our results suggest that lightning strokes could trigger or amplify the formation of an NaS layer in a descending sporadic E layer (ES), through a mechanism that involves the overturning of the electric field. A conjunction between the lower and upper atmospheres could be established as follows by these inter-connected phenomena, and the key processes could be suggested to be: lightning strokes → overturning of the electric field → ES generating NaS.

2020 ◽  
Author(s):  
Shican Qiu ◽  
Ning Wang ◽  
Willie Soon ◽  
Gaopeng Lu ◽  
Mingjiao Jia ◽  
...  

Abstract. In this research, we reveal the inter-connection between lightning strokes, reversal of the electric field, ionospheric disturbances, and a trigger of sporadic sodium layer event (NaS), based on the joint observations by three lidars, an ionosonde, an atmospheric electric mill, a fluxgate magnetometer, and World Wide Lightning Location Network (WWLLN). Our results suggest that lightning strokes would probably have an influence on the ionosphere and thus give rise to the occurrence of NaS, with the overturning of electric field playing an important role. Statistical results reveal that the sporadic E layers (ES) could hardly be formed or maintained when the atmospheric electric field turns upward. A conjunction between the lower and upper atmospheres could be established by these inter-connected phenomena, and the key processes could be suggested as follows: lightning strokes→overturning of electric field→different collisional frequencies for ions and electrons→depletion of ES/generation of NaS.


2008 ◽  
Vol 26 (9) ◽  
pp. 2929-2936 ◽  
Author(s):  
K.-I. Oyama ◽  
K. Hibino ◽  
T. Abe ◽  
R. Pfaff ◽  
T. Yokoyama ◽  
...  

Abstract. The electron temperature (Te), electron density (Ne), and two components of the electric field were measured from the height of 90 km to 150 km by one of the sounding rockets launched during the SEEK-2 campaign. The rocket went through sporadic E layer (Es) at the height of 102 km–109 km during ascent and 99 km–108 km during decent, respectively. The energy density of thermal electrons calculated from Ne and Te shows the broad maximum in the height range of 100–110 km, and it decreases towards the lower and higher altitudes, which implies that a heat source exists in the height region of 100 km–110 km. A 3-D picture of Es, that was drawn by using Te, Ne, and the electric field data, corresponded to the computer simulation; the main structure of Es is projected to a higher altitude along the magnetic line of force, thus producing irregular structures of Te, Ne and electric field in higher altitude.


2015 ◽  
Vol 33 (8) ◽  
pp. 941-953 ◽  
Author(s):  
T. Takahashi ◽  
S. Nozawa ◽  
T. T. Tsuda ◽  
Y. Ogawa ◽  
N. Saito ◽  
...  

Abstract. We have quantitatively evaluated generation mechanisms of a sporadic sodium layer (SSL) based on observational data obtained by multiple instruments at a high-latitude station: Ramfjordmoen, Tromsø, Norway (69.6° N, 19.2° E). The sodium lidar observed an SSL at 21:18 UT on 22 January 2012. The SSL was observed for 18 min, with a maximum sodium density of about 1.9 × 1010 m−3 at 93 km with a 1.1 km thickness. The European Incoherent Scatter (EISCAT) UHF radar observed a sporadic E layer (Es layer) above 90 km from 20:00 to 23:00 UT. After 20:00 UT, the Es layer gradually descended and reached 94 km at 21:18 UT when the SSL appeared at the same altitude. In this event, considering the abundance of sodium ions (10 % or less), the Es layer could provide only about 37 % or less of the sodium atoms to the SSL. We have investigated a temporal development of the normal sodium ion layer with a consideration of chemical reactions and the effect of the (southwestward) electric field using observational values of the neutral temperature, electron density, horizontal neutral wind, and electric field. This calculation has shown that those processes, including contributions of the Es layer, would provide about 88 % of sodium atoms of the SSL. The effects of meteor absorption and auroral particle sputtering appear to be less important. Therefore, we have concluded that the major source of the SSL was sodium ions in a normal sodium ion layer. Two processes – namely the downward transportation of sodium ions from a normal sodium ion layer due to the electric field and the additional supply of sodium ions from the Es layer under relatively high electron density conditions (i.e., in the Es layer) – played a major role in generating the SSL in this event. Furthermore, we have found that the SSL was located in a lower-temperature region and that the temperature inside the SSL did not show any remarkable temperature enhancements.


1998 ◽  
Vol 25 (11) ◽  
pp. 1769-1772 ◽  
Author(s):  
R. Pfaff ◽  
M. Yamamoto ◽  
P. Marionni ◽  
H. Mori ◽  
S. Fukao

2018 ◽  
Vol 36 (2) ◽  
pp. 361-371 ◽  
Author(s):  
Loredana Perrone ◽  
Angelo De Santis ◽  
Cristoforo Abbattista ◽  
Lucilla Alfonsi ◽  
Leonardo Amoruso ◽  
...  

Abstract. Ionosonde data and crustal earthquakes with magnitude M≥6.0 observed in Greece during the 2003–2015 period were examined to check if the relationships obtained earlier between precursory ionospheric anomalies and earthquakes in Japan and central Italy are also valid for Greek earthquakes. The ionospheric anomalies are identified on the observed variations of the sporadic E-layer parameters (h′Es, foEs) and foF2 at the ionospheric station of Athens. The corresponding empirical relationships between the seismo-ionospheric disturbances and the earthquake magnitude and the epicentral distance are obtained and found to be similar to those previously published for other case studies. The large lead times found for the ionospheric anomalies occurrence may confirm a rather long earthquake preparation period. The possibility of using the relationships obtained for earthquake prediction is finally discussed. Keywords. Ionosphere (Ionospheric disturbances)


2019 ◽  
Vol 5 (2) ◽  
pp. 30-34
Author(s):  
Ян Дали ◽  
Yang Dali ◽  
Чжан Теминь ◽  
Zhang Tiemin ◽  
Ван Цзихун ◽  
...  

We study the property of double sodium layer structures (DSLs) in the mesosphere and lower thermosphere (MLT) by a lidar at the low-latitude location of Haikou (20.0° N, 110.1° E), China. From April 2010 to December 2013, 21 DSLs were observed within a total of 377 observation days. DSLs were recorded at middle latitudes of Beijing and Wuhan, China, but were rarely observed at low latitudes. We analyze and discuss characteristics of DSLs such as time of occurrence, peak altitude, FWHM, duration time, etc. At the same time, the critical frequency foEs and the virtual height h'Es of the sporadic E layer Es were observed by an ionosonde over Danzhou (19.0° N, 109.3° E). We discuss such their characteristics as differences of time, differences of altitude compared to DSLs. We used an Nd:YAG laser pumped dye laser to generate the probing beam. The wavelength of the dye laser was set to 589 nm by a sodium fluorescence cell. The backscattered fluorescence photons from the sodium layer were collected by a telescope with the Φ1000 mm primary mirror.


2010 ◽  
Vol 28 (4) ◽  
pp. 941-950 ◽  
Author(s):  
L. Perrone ◽  
L. P. Korsunova ◽  
A. V. Mikhailov

Abstract. Crustal earthquakes with magnitude 6.0>M≥5.5 observed in Italy for the period 1979–2009 including the last one at L'Aquila on 6 April 2009 were considered to check if the earlier obtained relationships for ionospheric precursors for strong Japanese earthquakes are valid for the Italian moderate earthquakes. The ionospheric precursors are based on the observed variations of the sporadic E-layer parameters (h'Es, fbEs) and foF2 at the ionospheric station Rome. Empirical dependencies for the seismo-ionospheric disturbances relating the earthquake magnitude and the epicenter distance are obtained and they have been shown to be similar to those obtained earlier for Japanese earthquakes. The dependences indicate the process of spreading the disturbance from the epicenter towards periphery during the earthquake preparation process. Large lead times for the precursor occurrence (up to 34 days for M=5.8–5.9) tells about a prolong preparation period. A possibility of using the obtained relationships for the earthquakes prediction is discussed.


2019 ◽  
Vol 5 (2) ◽  
pp. 28-32
Author(s):  
Ян Дали ◽  
Yang Dali ◽  
Чжан Теминь ◽  
Zhang Tiemin ◽  
Ван Цзихун ◽  
...  

We study the property of double sodium layer structures (DSLs) in the mesosphere and lower thermosphere (MLT) by a lidar at the low-latitude location of Haikou (20.0° N, 110.1° E), China. From April 2010 to December 2013, 21 DSLs were observed within a total of 377 observation days. DSLs were recorded at middle latitudes of Beijing and Wuhan, China, but were rarely observed at low latitudes. We analyze and discuss characteristics of DSLs such as time of occurrence, peak altitude, FWHM, duration time, etc. At the same time, the critical frequency foEs and the virtual height h'Es of the sporadic E layer Es were observed by an ionosonde over Danzhou (19.0° N, 109.3° E). We discuss such their characteristics as differences of time, differences of altitude compared to DSLs. We used an Nd:YAG laser pumped dye laser to generate the probing beam. The wavelength of the dye laser was set to 589 nm by a sodium fluorescence cell. The backscattered fluorescence photons from the sodium layer were collected by a telescope with the Φ1000 mm primary mirror.


2005 ◽  
Vol 23 (7) ◽  
pp. 2319-2334 ◽  
Author(s):  
R. Pfaff ◽  
H. Freudenreich ◽  
T. Yokoyama ◽  
M. Yamamoto ◽  
S. Fukao ◽  
...  

Abstract. Electric field and plasma density data gathered on a sounding rocket launched from Uchinoura Space Center, Japan, reveal a complex electrodynamics associated with sporadic-E layers and simultaneous observations of quasi-periodic radar echoes. The electrodynamics are characterized by spatial and temporal variations that differed considerably between the rocket's upleg and downleg traversals of the lower ionosphere. Within the main sporadic-E layer (95–110 km) on the upleg, the electric fields were variable, with amplitudes of 2–4 mV/m that changed considerably within altitude intervals of 1–3 km. The identification of polarization electric fields coinciding with plasma density enhancements and/or depletions is not readily apparent. Within this region on the downleg, however, the direction of the electric field revealed a marked change that coincided precisely with the peak of a single, narrow sporadic-E plasma density layer near 102.5 km. This shear was presumably associated with the neutral wind shear responsible for the layer formation. The electric field data above the sporadic-E layer on the upleg, from 110 km to the rocket apogee of 152 km, revealed a continuous train of distinct, large scale, quasi-periodic structures with wavelengths of 10–15 km and wavevectors oriented between the NE-SW quadrants. The electric field structures had typical amplitudes of 3–5 mV/m with one excursion to 9 mV/m, and in a very general sense, were associated with perturbations in the plasma density. The electric field waveforms showed evidence for steepening and/or convergence effects and presumably had mapped upwards along the magnetic field from the sporadic-E region below. Candidate mechanisms to explain the origin of these structures include the Kelvin-Helmholtz instability and the Es-layer instability. In both cases, the same shear that formed the sporadic-E layer would provide the energy to generate the km-scale structures. Other possibilities include gravity waves or a combination of these processes. The data suggest that these structures were associated with the lower altitude density striations that were the seat of the QP radar echoes observed simultaneously. They also appear to have been associated with the mechanism responsible for a well-defined pattern of "whorls" in the neutral wind data that were revealed in a chemical trail released by a second sounding rocket launched 15min later. Short scale (<100 m) electric field irregularities were also observed and were strongest in the sporadic-E region below 110km. The irregularities were organized into 2–3 layers on the upleg, where the plasma density also displayed multiple layers, yet were confined to a single layer on the downleg where the plasma density showed a single, well-defined sporadic-E peak. The linear gradient drift instability involving the DC electric field and the vertical plasma gradient is shown to be incapable of driving the observed waves on the upleg, but may have contributed to the growth of short scale waves on the topside of the narrow unstable density gradient observed on the downleg. The data suggest that other sources of free energy may have been important factors for the growth of the short scale irregularities. Keywords. Ionosphere (Mid-latitude ionosphere; Electric fields and currents; Ionospheric irregularities)


Sign in / Sign up

Export Citation Format

Share Document