scholarly journals Aerosol optical properties derived from POLDER-3/PARASOL (2005–2013) over the Western Mediterranean Sea – Part 2: Spatial distribution and temporal variability

2021 ◽  
Vol 21 (16) ◽  
pp. 12715-12737
Author(s):  
Isabelle Chiapello ◽  
Paola Formenti ◽  
Lydie Mbemba Kabuiku ◽  
Fabrice Ducos ◽  
Didier Tanré ◽  
...  

Abstract. The Mediterranean atmosphere is impacted by a variety of natural and anthropogenic aerosols which exert a complex and variable pressure on the regional climate and air quality. This study focuses on the Western Mediterranean Sea (west of longitude 20∘ E) using the full POLarization and Directionality of the Earth's Reflectances version 3 (POLDER-3)/Polarization &amp; Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) aerosol data record derived from the operational clear-sky ocean algorithm (collection 3) available from March 2005 to October 2013. This 8.5-year satellite data set includes retrievals at 865 nm of the total, fine-, and coarse-mode aerosol optical depth (AOD, AODF, and AODC, respectively), Ångström exponent (AE), and the spherical/non-spherical partition of the coarse-mode AOD (AODCS and AODCNS, respectively), that have been carefully validated over the study region (Formenti et al., 2018). Here, we analyze the spatial distribution, the seasonal cycle, and interannual variability of this ensemble of advanced aerosol products in three latitude bands (34–38, 38–42, and > 42∘ N) and for three sites (Ersa, Barcelona, Lampedusa) distributed on the western basin. POLDER-3 retrieves the high influence of north African desert dust over the region, which largely controls the spatial distributions (south-to-north decreasing gradient) and seasonal cycles (spring/summer maximum) of both AOD and coarse AOD, including its non-spherical component. In contrast, the coarse spherical component of AOD remains relatively homogenously low all year long over the region, whereas fine-mode AODs are generally more elevated in the eastern part of the region of study, especially north of the Adriatic Sea. From 2005 to 2013, annual POLDER-3 AOD evolution shows a decreasing trend of 0.0030 yr−1 in absolute value at 865 nm (0.0060 yr−1 at 550 nm). Such a downward evolution is much more pronounced and spatially extended for AODF (−0.0020 yr−1 at 865 nm) than for AODC. Our analysis also suggests that the North Atlantic Oscillation (NAO) index explains a significant part of the interannual variability of POLDER-3 AODC, reflecting its role on the frequency of Saharan dust transport over the region. Finally, the POLDER-3 data set highlights an improvement of air quality related to the fine aerosol component, with a marked evolution toward more frequent occurrence of clean conditions (≥ 75 % of daily AODF-865 nm<0.05) at the end of the period of study (2010–2013) over most of the Western Mediterranean Sea, and much less evidence of such a large-scale evolution for the coarse fraction. Therefore, despite the high and variable influence of mostly natural north African dust over the region, the POLDER-3 advanced aerosol data set appears sufficiently accurate to successfully resolve the concurrent downward trend of fine, primarily anthropogenic particles, most likely related to reduced emissions in the surrounding European countries.

2021 ◽  
Author(s):  
Isabelle Chiapello ◽  
Paola Formenti ◽  
Lydie Mbemba Kabuiku ◽  
Fabrice Ducos ◽  
Didier Tanré ◽  
...  

Abstract. The Mediterranean atmosphere is impacted by a variety of natural and anthropogenic aerosols, which exert a complex and variable pressure on the regional climate and air quality. In this study, we investigate aerosol spatial distribution and temporal evolution over the western Mediterranean Sea (west of longitude 20° E) using the full POLDER-3/PARASOL aerosol data record derived from the operational clear-sky ocean algorithm (collection 3) available from March 2005 to October 2013. This 8.5-yr satellite data set includes retrievals at 865 nm of the total, fine, and coarse mode aerosol optical depth (AOD, AODF, and AODC, respectively), Angström exponent (AE), and the spherical/non-spherical partition of the coarse-mode AOD (AODCS and AODCNS, respectively). In a previous paper (Formenti et al., 2018), these POLDER-3-derived aerosol properties have been carefully validated over the study region, based on coincident ground-based and airborne aerosol measurements. Here we analyze the spatial distribution, the seasonal cycle and interannual variability of this ensemble of products in three latitude bands (34–38° N, 38–42° N, and > 42° N) and for three sites (Ersa, Barcelona, Lampedusa) distributed on the western basin Overall the POLDER-3 AOD spatial distribution exhibits a well-known south-to-north decreasing gradient, and a seasonal cycle characterized by enhanced aerosol loads in spring and summer, both controlled by Saharan dust. POLDER-3 retrievals of AE, AODF, AODC, and fine mode fraction (AODF/AOD) highlight the influence of coarse particles in the southern part of the region, off the north African coast, and higher relative contribution of fine particles in the northern part, off the south European coast, with all year long persistent elevated loads over the Adriatic Sea. Over the rest of the western Mediterranean Sea, POLDER-3 retrievals show a more homogeneous spatial distribution of fine particles than that of coarse particles, even though climatological means of AODF highlight seasonal differences in the order of a factor 2 between the cleanest conditions occurring in the southern part of the basin in winter and those most polluted observed in its northern part in Spring. The seasonal and spatial variability of AODCNS is close to that observed for AODC, whereas POLDER-3 exhibit relatively low and weakly variable levels of coarse spherical particles (AODCS 


2016 ◽  
Author(s):  
Reiner Onken ◽  
Heinz-Volker Fiekas ◽  
Laurent Beguery ◽  
Ines Borrione ◽  
Andreas Funk ◽  
...  

Abstract. The observational part of the REP14-MED experiment was conducted in June 2014 in the Sardo-Balearic Sea west of Sardinia Island (Western Mediterranean Sea). Two research vessels collected high-resolution oceanographic data by means of hydrographic casts, towed systems, and underway measurements. In addition, a vast amount of data was provided by a fleet of 11 gliders, time series were available from moored instruments, and information on Lagrangian flow patterns were obtained from surface drifters and one profiling float. The spatial resolution of the observations encompasses a spectrum over four orders of magnitude from O(101 m) to O(105 m), and the time series from the moored instruments cover a spectral range of five orders from O(101 s) to O(106 s). The objective of this article is to provide an overview of the huge data set which is utilized by various ongoing studies, focusing on (i) sub-mesoscale and mesoscale pattern analyses, (ii) operational forecasting in terms of the development and assessment of sampling strategies, assimilation methods, and model validation, (iii) modeling the variability of the ocean, and (iv) testing of new payloads for gliders.


Ocean Science ◽  
2018 ◽  
Vol 14 (2) ◽  
pp. 321-335 ◽  
Author(s):  
Reiner Onken ◽  
Heinz-Volker Fiekas ◽  
Laurent Beguery ◽  
Ines Borrione ◽  
Andreas Funk ◽  
...  

Abstract. The observational part of the REP14-MED experiment was conducted in June 2014 in the Sardo-Balearic Basin west of Sardinia (western Mediterranean Sea). Two research vessels collected high-resolution oceanographic data by means of hydrographic casts, towed systems, and underway measurements. In addition, a vast amount of data was provided by a fleet of 11 ocean gliders, time series were available from moored instruments, and information on Lagrangian flow patterns was obtained from surface drifters and one profiling float. The spatial resolution of the observations encompasses a spectrum over 4 orders of magnitude from 𝒪(101 m) to 𝒪(105 m), and the time series from the moored instruments cover a spectral range of 5 orders from 𝒪(101 s) to 𝒪(106 s). The objective of this article is to provide an overview of the huge data set which has been utilised by various studies, focusing on (i) water masses and circulation, (ii) operational forecasting, (iii) data assimilation, (iv) variability of the ocean, and (v) new payloads for gliders.


2019 ◽  
Vol 118 (3) ◽  
pp. 661-669
Author(s):  
Nina Violetta Schwarz ◽  
Maurice Stierl

This article takes the encounters between migrant travelers at sea and Alarm Phone activists on land as a starting point to inquire into recent transformations in maritime migrant mobilities and EUropean and North African attempts to govern them, with a focus on the western Mediterranean Sea. The Alarm Phone, an activist hotline assisting migrants in distress at sea, has been involved in everyday struggles over movement in all three Mediterranean regions, so that tracing its interventions can provide insights into the complex interplay between enactments of the freedom of movement and the ways in which EUrope seeks to preempt and deter them. Situated right at the nexus of migrant movements conceived in a kinetic and a political sense, the Alarm Phone constitutes an analytic of the EUropean border regime, able to observe the interplay between disobedient movements and their policing at sea.


2015 ◽  
Vol 11 (12) ◽  
pp. 1635-1651 ◽  
Author(s):  
B. Ausín ◽  
I. Hernández-Almeida ◽  
J.-A. Flores ◽  
F.-J. Sierro ◽  
M. Grosjean ◽  
...  

Abstract. A new data set of 88 marine surface sediment samples and related oceanic environmental variables (temperature, salinity, chlorophyll a, oxygen, etc.) was studied to quantify the relationship between assemblages of coccolithophore species and modern environmental conditions in the western Mediterranean Sea and the Atlantic Ocean, west of the Strait of Gibraltar. Multivariate statistical analyses revealed that coccolithophore species were primarily related to sea surface salinity (SSS), explaining an independent and significant proportion of variance in the coccolithophore data. A quantitative coccolithophore-based transfer function to estimate SSS was developed using the modern analog technique (MAT) and weighted-averaging partial least square regression (WA-PLS). The bootstrapped regression coefficient (R2boot) was 0.85MAT and 0.80WA-PLS, with a root-mean-square error of prediction (RMSEP) of 0.29MAT and 0.30WA-PLS (psu). The resulting transfer function was applied to fossil coccolithophore assemblages in the highly resolved (~ 65 years) sediment core CEUTA10PC08 from the Alboran Sea (western Mediterranean) in order to reconstruct SSS for the last 25 kyr. The reliability of the reconstruction was evaluated by assessing the degree of similarity between fossil and modern coccolithophore assemblages and by a comparison of reconstructions with fossil ordination scores. Analogs were poor for the stadials associated with Heinrich events 2 and 1 and part of the Last Glacial Maximum. Good analogs indicate a more reliable reconstruction of the SSS for the last 15.5 kyr. During this period, several millennial and centennial SSS changes were observed and associated with sea-level oscillations and variations in the Atlantic Water entering the Alboran.


2009 ◽  
Vol 373 (2) ◽  
pp. 79-86 ◽  
Author(s):  
Catalina Monzón-Argüello ◽  
Ciro Rico ◽  
Carlos Carreras ◽  
Pascual Calabuig ◽  
Adolfo Marco ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document