scholarly journals Is the ocean surface a source of nitrous acid (HONO) in the marine boundary layer?

2021 ◽  
Vol 21 (24) ◽  
pp. 18213-18225
Author(s):  
Leigh R. Crilley ◽  
Louisa J. Kramer ◽  
Francis D. Pope ◽  
Chris Reed ◽  
James D. Lee ◽  
...  

Abstract. Nitrous acid, HONO, is a key net photolytic precursor to OH radicals in the atmospheric boundary layer. As OH is the dominant atmospheric oxidant, driving the removal of many primary pollutants and the formation of secondary species, a quantitative understanding of HONO sources is important to predict atmospheric oxidising capacity. While a number of HONO formation mechanisms have been identified, recent work has ascribed significant importance to the dark, ocean-surface-mediated conversion of NO2 to HONO in the coastal marine boundary layer. In order to evaluate the role of this mechanism, here we analyse measurements of HONO and related species obtained at two contrasting coastal locations – Cabo Verde (Atlantic Ocean, denoted Cape Verde herein), representative of the clean remote tropical marine boundary layer, and Weybourne (United Kingdom), representative of semi-polluted northern European coastal waters. As expected, higher average concentrations of HONO (70 ppt) were observed in marine air for the more anthropogenically influenced Weybourne location compared to Cape Verde (HONO < 5 ppt). At both sites, the approximately constant HONO/NO2 ratio at night pointed to a low importance for the dark, ocean-surface-mediated conversion of NO2 into HONO, whereas the midday maximum in the HONO/NO2 ratios indicated significant contributions from photo-enhanced HONO formation mechanisms (or other sources). We obtained an upper limit to the rate coefficient of dark, ocean-surface HONO-to-NO2 conversion of CHONO = 0.0011 ppb h−1 from the Cape Verde observations; this is a factor of 5 lower than the slowest rate reported previously. These results point to significant geographical variation in the predominant HONO formation mechanisms in marine environments and indicate that caution is required when extrapolating the importance of such mechanisms from individual study locations to assess regional and/or global impacts on oxidising capacity. As a significant fraction of atmospheric processing occurs in the marine boundary layer, particularly in the tropics, better constraint of the possible ocean surface source of HONO is important for a quantitative understanding of chemical processing of primary trace gases in the global atmospheric boundary layer and associated impacts upon air pollution and climate.

2021 ◽  
Author(s):  
Leigh Crilley ◽  
Louisa Kramer ◽  
Francis Pope ◽  
Chris Reed ◽  
James Lee ◽  
...  

Abstract. Nitrous acid, HONO, is a key net photolytic precursor to OH radicals in the atmospheric boundary later. As OH is the dominant atmospheric oxidant, driving the removal of many primary pollutants and the formation of secondary species, a quantitative understanding of HONO sources is important to predict atmospheric oxidising capacity. While a number of HONO formation mechanisms have been identified, recent work has ascribed significant importance to the dark, ocean-surface mediated conversion of NO2 to HONO in the coastal marine boundary layer. In order to evaluate the role of this mechanism, here we analyse measurements of HONO and related species obtained at two contrasting coastal locations – Cape Verde (Atlantic Ocean), representative of the clean remote tropical marine boundary layer, and Weybourne (United Kingdom), representative of semi-polluted Northern European coastal waters. As expected, higher average concentrations of HONO (70 ppt) were observed in marine air for the more anthropogenically influenced Weybourne location compared to Cape Verde (HONO < 5 ppt). At both sites, the approximately constant HONO/NO2 ratio at night pointed to a low importance for the dark ocean-surface mediated conversion of NO2 into HONO, whereas the midday maximum in the HONO/NO2 ratios indicated significant contributions from photo-enhanced HONO formation mechanisms (or other sources). We obtained an upper limit to the rate coefficient of dark ocean-surface HONO-to-NO2 conversion of CHONO = 0.0011 ppb hr−1 from the Cape Verde observations; this is a factor of 5 lower than the slowest rate reported previously. These results point to significant geographical variation in the predominant HONO formation mechanisms in marine environments and indicate that caution is required when extrapolating the importance of such mechanisms from individual study locations to assess regional and/or global impacts on oxidising capacity. As a significant fraction of atmospheric processing occurs in the marine boundary layer, particularly in the tropics, better constraint of the possible ocean surface source of HONO is important for a quantitative understanding of chemical processing of primary trace gases in the global atmospheric boundary layer and associated impacts upon air pollution and climate.


2013 ◽  
Vol 13 (9) ◽  
pp. 24343-24403
Author(s):  
K.-P. Heue ◽  
H. Riede ◽  
D. Walter ◽  
C. A. M. Brenninkmeijer ◽  
T. Wagner ◽  
...  

Abstract. The CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) flying laboratory measures once per month the chemical composition at cruise altitude (10...12 km) during 4 consecutive Lufthansa flights. Here we present a case study of enhanced nitrogen oxides (NOx), nitrous acid (HONO), and formaldehyde (HCHO) in a thunderstorm cloud over the Caribbean islands of Guadeloupe in August 2011. Nitrous acid is an important reservoir gas for OH radicals, and only few observations of HONO at cruise altitude exist. CARIBIC is designed as a long period atmospheric observation system, the actual system has been flying almost monthly since 8 yr now. During this period only very few similar events (one since 2008) were observed. Due to multiple scattering the light path inside clouds is enhanced, thereby lowering the detection limit of the DOAS instrument. Under background conditions the detection limits are 46 ppt for HONO, 387 ppt for \\chem{HCHO}, and 100 ppt for NO2 and are roughly three times lower inside the cloud. Based on radiative transfer simulations we estimate the path length to 90{\\ldots}100 km and the cloud top height to ≈15 km. The inferred mixing ratios of HONO, HCHO and NO2 are 37 ppt, 400 ppt and 170 ppt, respectively. Bromine monoxide (BrO) remained below the detection limit of 1 ppt. Because the uplifted air masses originated from the remote marine boundary layer and lightning was observed in the area by the World Wide Lightning Location Network several hours prior to the measurement, the NO (≈1.5 ppb) enhancement was in all likelihood caused by lightning. The main source for the observed HCHO is probably updraught from the boundary layer, because the chemical formation of formaldehyde due to methane oxidation is too weak. Besides HCHO also CH3OOH and isoprene are considered as precursors. The chemical box model CAABA is used to estimate the \\chem{NO} and HCHO source strengths, which are necessary to explain our measurements. For NO a source strength of 8.25 × 109 molec cm−2 s−1 km−1 is found, which corresponds to the lightning activity as observed by the World Wide Lightning Location network and a lightning emission of 4.2 × 1025 NO molec/flash. The HCHO updraught is of the order of 121 × 109 molec cm−2 s−1 km−1. Also isoprene and CH3OOH as possible HCHO sources were studied and similar source strengths were found.


2021 ◽  
Author(s):  
Leigh Crilley ◽  
Louisa Kramer ◽  
Francis Pope ◽  
Chris Reed ◽  
James Lee ◽  
...  

2011 ◽  
Vol 11 (12) ◽  
pp. 5591-5601 ◽  
Author(s):  
J. Lauros ◽  
A. Sogachev ◽  
S. Smolander ◽  
H. Vuollekoski ◽  
S.-L. Sihto ◽  
...  

Abstract. We carried out column model simulations to study particle fluxes and deposition and to evaluate different particle formation mechanisms at a boreal forest site in Finland. We show that kinetic nucleation of sulphuric acid cannot be responsible for new particle formation alone as the simulated vertical profile of particle number concentration does not correspond to observations. Instead organic induced nucleation leads to good agreement confirming the relevance of the aerosol formation mechanism including organic compounds emitted by the biosphere. The simulation of aerosol concentration within the atmospheric boundary layer during nucleation event days shows a highly dynamical picture, where particle formation is coupled with chemistry and turbulent transport. We have demonstrated the suitability of our turbulent mixing scheme in reproducing the most important characteristics of particle dynamics within the boundary layer. Deposition and particle flux simulations show that deposition affects noticeably only the smallest particles in the lowest part of the atmospheric boundary layer.


2014 ◽  
Vol 7 (1) ◽  
pp. 173-182 ◽  
Author(s):  
T. Luo ◽  
R. Yuan ◽  
Z. Wang

Abstract. Atmospheric boundary layer (ABL) processes are important in climate, weather and air quality. A better understanding of the structure and the behavior of the ABL is required for understanding and modeling of the chemistry and dynamics of the atmosphere on all scales. Based on the systematic variations of the ABL structures over different surfaces, different lidar-based methods were developed and evaluated to determine the boundary layer height and mixing layer height over land and ocean. With Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) micropulse lidar (MPL) and radiosonde measurements, diurnal and season cycles of atmospheric boundary layer depth and the ABL vertical structure over ocean and land are analyzed. The new methods are then applied to satellite lidar measurements. The aerosol-derived global marine boundary layer heights are evaluated with marine ABL stratiform cloud top heights and results show a good agreement between them.


2015 ◽  
Vol 15 (6) ◽  
pp. 9709-9766 ◽  
Author(s):  
M. E. Jenkin ◽  
J. C. Young ◽  
A. R. Rickard

Abstract. The chemistry of isoprene degradation in the Master Chemical Mechanism (MCM) has been systematically refined and updated to reflect recent advances in understanding, with these updates appearing in the latest version, MCM v3.3. The complete isoprene degradation mechanism in MCM v3.3 consists of 1935 reactions of 605 closed shell and free radical species, which treat the chemistry initiated by reaction with OH radicals, NO3 radicals and ozone (O3). A detailed overview of the updates is provided, within the context of reported kinetic and mechanistic information. The revisions mainly relate to the OH-initiated chemistry, which tends to dominate under atmospheric conditions, although these include updates to the chemistry of some products that are also generated from the O3 - and NO3-initiated oxidation. The revisions have impacts in a number of key areas, including HOx recycling, NOx recycling and the formation of species reported to play a role in SOA-formation mechanisms. The performance of the MCM v3.3 isoprene mechanism has been compared with those of earlier versions (MCM v3.1 and MCM v3.2) over a range of relevant conditions, using a box model of the tropical forested boundary layer. The results of these calculations are presented and discussed, and are used to illustrate the impacts of the mechanistic updates in MCM v3.3.


2003 ◽  
Vol 3 (3) ◽  
pp. 2963-3050 ◽  
Author(s):  
R. Sander ◽  
W. C. Keene ◽  
A. A. P. Pszenny ◽  
R. Arimoto ◽  
G. P. Ayers ◽  
...  

Abstract. The cycling of inorganic bromine in the marine boundary layer (mbl) has received increased attention in recent years. Bromide, a constituent of sea water, is injected into the atmosphere in association with sea-salt aerosol by breaking waves on the ocean surface. Measurements reveal that supermicrometer sea-salt aerosol is depleted in bromine by about 50% relative to conservative tracers, whereas marine submicrometer aerosol is often enriched in bromine. Model calculations, laboratory studies, and field observations strongly suggest that these depletions reflect the chemical transformation of particulate bromide to reactive inorganic gases that influence the processing of ozone and other important constituents of marine air. However, currently available techniques cannot reliably quantify many \\chem{Br}-containing compounds at ambient concentrations and, consequently, our understanding of inorganic Br cycling over the oceans and its global significance are uncertain. To provide a more coherent framework for future research, we have reviewed measurements in marine aerosol, the gas phase, and in rain. We also summarize sources and sinks, as well as model and laboratory studies of chemical transformations. The focus is on inorganic bromine over the open oceans, excluding the polar regions. The generation of sea-salt aerosol at the ocean surface is the major tropospheric source producing about 6.2 Tg/a of bromide. The transport of  Br from continents (as mineral aerosol, and as products from biomass-burning and fossil-fuel combustion) can be of local importance. Transport of degradation products of long-lived Br-containing compounds from the stratosphere and other sources contribute lesser amounts. Available evidence suggests that, following aerosol acidification, sea-salt bromide reacts to form Br2 and BrCl that volatilize to the gas phase and photolyze in daylight to produce atomic Br and Cl. Subsequent transformations can destroy tropospheric ozone, oxidize dimethylsulfide (DMS) and hydrocarbons in the gas phase and S(IV) in aerosol solutions, and thereby potentially influence climate. The diurnal cycle of gas-phase \\Br and the corresponding particulate Br deficits are correlated. Higher values of Br in the gas phase during daytime are consistent with expectations based on photochemistry. Mechanisms that explain the widely reported accumulation of particulate Br in submicrometer aerosols are not yet understood. We expect that the importance of inorganic Br cycling will vary in the future as a function of both increasing acidification of the atmosphere (through anthropogenic emissions) and climate changes. The latter affects bromine cycling via meteorological factors including global wind fields (and the associated production of sea-salt aerosol), temperature, and relative humidity.


2020 ◽  
Author(s):  
Susana Barbosa ◽  
Mauricio Camilo ◽  
Carlos Almeida ◽  
José Almeida ◽  
Guilherme Amaral ◽  
...  

&lt;p&gt;&lt;span&gt;The study of the electrical properties of the atmospheric marine boundary layer is important as the effect of natural radioactivity in driving near surface ionisation is significantly reduced over the ocean, and the concentration of aerosols is also typically lower than over continental areas, allowing a clearer examination of space-atmosphere interactions. Furthermore, cloud cover over the ocean is dominated by low-level clouds and most of the atmospheric charge lies near the earth surface, at low altitude cloud tops. &lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;span&gt;The relevance of electric field observations in the marine boundary layer is enhanced by the the fact that the electrical conductivity of the ocean air is clearly linked to global atmospheric pollution and aerosol content. The increase in aerosol pollution since the original observations made in the early 20th century by the survey ship Carnegie is a pressing and timely motivation for modern measurements of the atmospheric electric field in the marine boundary layer. Project SAIL (Space-Atmosphere-Ocean Interactions in the marine boundary Layer) addresses this challenge by means of an unique monitoring campaign on board the ship-rigged sailing ship NRP Sagres during its 2020 circumnavigation expedition. &lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;span&gt;The Portuguese Navy ship NRP Sagres departed from Lisbon on January 5th in a journey around the globe that will take 371 days. Two identical field mill sensors (CS110, Campbell Scientific) are installed &lt;/span&gt;&lt;span&gt;o&lt;/span&gt;&lt;span&gt;n the mizzen mast, one at a height of 22 m, and the other at a height of 5 meters. &lt;/span&gt;&lt;span&gt;A visibility sensor (SWS050, Biral) was also set-up on the same mast in order to have measurements of the extinction coefficient of the atmosphere and assess fair-weather conditions.&lt;/span&gt;&lt;span&gt; Further observations include gamma radiation measured with a NaI(Tl) scintillator from 475 keV to 3 MeV, cosmic radiation up to 17 MeV, and atmospheric ionisation from a cluster ion counter (Airel). The&lt;/span&gt;&lt;span&gt; 1 Hz measurements of the atmospheric electric field&lt;/span&gt;&lt;span&gt; and from all the other sensors&lt;/span&gt;&lt;span&gt; are &lt;/span&gt;&lt;span&gt;linked to the same rigorous temporal reference frame and precise positioning through kinematic GNSS observations. &lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;span&gt;Here the first results of the SAIL project will be presented, focusing on fair-weather electric field over the Atlantic. The observations obtained in the first three sections of the circumnavigation journey, including Lisbon (Portugal) - Tenerife (Spain), from 5 to 10 January, Tenerife - Praia (Cape Verde) from 13 to 19 January, and across the Atlantic from Cape Verde to Rio de Janeiro (Brasil), from January 22nd to February 14th, will be presented and discussed.&lt;/span&gt;&lt;/p&gt;


2010 ◽  
Vol 40 (10) ◽  
pp. 2325-2332 ◽  
Author(s):  
Richard J. Foreman ◽  
Stefan Emeis

Abstract A new functional form of the neutral drag coefficient for moderate to high wind speeds in the marine atmospheric boundary layer for a range of field measurements as reported in the literature is proposed. This new form is found to describe a wide variety of measurements recorded in the open ocean, coast, fetch-limited seas, and lakes, with almost one and the same set of parameters. This is the result of a reanalysis of the definition of the drag coefficient in the marine boundary layer, which finds that a constant is missing from the traditional definition of the drag coefficient. The constant arises because the neutral friction velocity over water surfaces is not directly proportional to the 10-m wind speed, a consequence of the transition to rough flow at low wind speeds. Within the rough flow regime, the neutral friction velocity is linearly dependent on the 10-m wind speed; consequently, within this rough regime, the new definition of the drag coefficient is not a function of the wind speed. The magnitude of the new definition of the neutral drag coefficient represents an upper limit to the magnitude of the traditional definition.


2020 ◽  
Author(s):  
Yuliya Troitskaya ◽  
Alexander Kandaurov ◽  
Daniil Sergeev ◽  
Olga Ermakova ◽  
Dmitrii Kozlov ◽  
...  

&lt;p&gt;Showing the record strengths and growth-rates, a number of recent hurricanes have highlighted needs for improving forecasts of tropical cyclone intensities most sensitive to models of the air-sea coupling. Especially challenging is the nature and effect of the very small-scale phenomena, the sea-spray and foam, supposed to strongly affecting the momentum- and heat- air-sea fluxes at strong winds. This talk will focus on our progress in understanding and describing these &quot;micro-scale&quot; processes, their physical properties, the spray and foam mediated air-sea fluxes and the impact on the development of marine storms.&lt;/p&gt;&lt;p&gt;The starting points for this study were two laboratory experiments. The first one was designed for investigation of the spray generation mechanisms at high winds. We found out 3 dominant spray generating mechanisms: stretching liquid ligaments, bursting bubbles, splashing of the falling droplets and &quot;bag-breakup&quot;. We investigated the efficiency spray-production mechanisms and developed the empirical statistics of the numbers of the spray generating events of each type. Basing on the &quot;white-cap method&quot; we found out the dependence of the spray-generating events on the wind fetch. The main attention was paid to the &quot;bag-breakup&quot; mechanism. Here we studied in detail the statistics of spray produced from one &quot;bag-breakup&quot; event. Basing on these developments, we estimated heat and momentum fluxes from the spray-generating events of different types and found out the dominant role of the &quot;bag-breakup&quot; mechanism.&lt;/p&gt;&lt;p&gt;To estimate the direct heat and momentum fluxes from the ocean surface to the atmosphere, we studied in the special experiment the foam impact on the short-wave part of the surface waves and the heat momentum exchange in the atmospheric boundary layer at high winds. Based on these results, we suggest a simple model for the aerodynamic and temperature roughness and the eddy viscosity in the turbulent boundary layer over a fractionally foam-covered water surface.&lt;/p&gt;&lt;p&gt;The synergetic effect of foam at the water surface and spray in the marine atmospheric boundary layer on ocean surface resistance at high winds is estimated so as to be able to explain the observed peculiarities of the air-sea fluxes at stormy conditions. Calculations within the nonhydrostatic axisymmetric model show, that the &quot;microphysics&quot; of the air-sea coupling significantly accelerate development of the ocean storm.&lt;/p&gt;&lt;p&gt;This work was supported by RFBR grant 19-05-00249 and RSF grant 19-17-00209.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document