scholarly journals Photochemical degradation of iron(III) citrate/citric acid aerosol quantified with the combination of three complementary experimental techniques and a kinetic process model

2021 ◽  
Vol 21 (1) ◽  
pp. 315-338
Author(s):  
Jing Dou ◽  
Peter A. Alpert ◽  
Pablo Corral Arroyo ◽  
Beiping Luo ◽  
Frederic Schneider ◽  
...  

Abstract. Iron(III) carboxylate photochemistry plays an important role in aerosol aging, especially in the lower troposphere. These complexes can absorb light over a broad wavelength range, inducing the reduction of iron(III) and the oxidation of carboxylate ligands. In the presence of O2, the ensuing radical chemistry leads to further decarboxylation, and the production of .OH, HO2., peroxides, and oxygenated volatile organic compounds, contributing to particle mass loss. The .OH, HO2., and peroxides in turn reoxidize iron(II) back to iron(III), closing a photocatalytic cycle. This cycle is repeated, resulting in continual mass loss due to the release of CO2 and other volatile compounds. In a cold and/or dry atmosphere, organic aerosol particles tend to attain highly viscous states. While the impact of reduced mobility of aerosol constituents on dark chemical reactions has received substantial attention, studies on the effect of high viscosity on photochemical processes are scarce. Here, we choose iron(III) citrate (FeIII(Cit)) as a model light-absorbing iron carboxylate complex that induces citric acid (CA) degradation to investigate how transport limitations influence photochemical processes. Three complementary experimental approaches were used to investigate kinetic transport limitations. The mass loss of single, levitated particles was measured with an electrodynamic balance, the oxidation state of deposited particles was measured with X-ray spectromicroscopy, and HO2. radical production and release into the gas phase was observed in coated-wall flow-tube experiments. We observed significant photochemical degradation with up to 80 % mass loss within 24 h of light exposure. Interestingly, we also observed that mass loss always accelerated during irradiation, resulting in an increase of the mass loss rate by about a factor of 10. When we increased relative humidity (RH), the observed particle mass loss rate also increased. This is consistent with strong kinetic transport limitations for highly viscous particles. To quantitatively compare these experiments and determine important physical and chemical parameters, a numerical multilayered photochemical reaction and diffusion (PRAD) model was developed that treats chemical reactions and the transport of various species. The PRAD model was tuned to simultaneously reproduce all experimental results as closely as possible and captured the essential chemistry and transport during irradiation. In particular, the photolysis rate of FeIII, the reoxidation rate of FeII, HO2. production, and the diffusivity of O2 in aqueous FeIII(Cit) ∕ CA system as function of RH and FeIII(Cit) ∕ CA molar ratio could be constrained. This led to satisfactory agreement within model uncertainty for most but not all experiments performed. Photochemical degradation under atmospheric conditions predicted by the PRAD model shows that release of CO2 and repartitioning of organic compounds to the gas phase may be very important when attempting to accurately predict organic aerosol aging processes.

2020 ◽  
Author(s):  
Jing Dou ◽  
Peter A. Alpert ◽  
Pablo Corral Arroyo ◽  
Beiping Luo ◽  
Frederic Schneider ◽  
...  

Abstract. Iron(III) carboxylate photochemistry plays an important role in aerosol aging, especially in the lower troposphere. These complexes can absorb light over a broad wavelength range, inducing the reduction of iron(III) and the oxidation of carboxylate ligands. In the presence of O2, ensuing radical chemistry leads to further decarboxylation, and the production of ·OH, HO2·, peroxides, and oxygenated volatile organic compounds, contributing to particle mass loss. The ·OH, HO2·, and peroxides in turn re-oxidize iron(II) back to iron(III), closing a photocatalytic cycle. This cycle is repeated resulting in continual mass loss due to the release of CO2 and other volatile compounds. In a cold and/or dry atmosphere, organic aerosol particles tend to attain highly viscous states. While the impact of reduced mobility of aerosol constituents on dark chemical reactions has received substantial attention, studies on the effect of high viscosity on photochemical processes are scarce. Here, we choose iron(III)-citrate (FeIII(Cit)) as a model light absorbing iron carboxylate complex that induces citric acid (CA) degradation to investigate how transport limitations influence photochemical processes. Three complementary experimental approaches were used to investigate kinetic transport limitations. The mass loss of single, levitated particles was measured with an electrodynamic balance, the oxidation state of deposited particles was measured with X-ray spectromicroscopy, and HO2· radical production and release into the gas phase was observed in coated wall flow tube experiments. To quantitatively compare these experiments and determine important physical and chemical parameters, a numerical multi-layered photochemical reaction and diffusion (PRAD) model that treats chemical reactions and transport of various species was developed. We observed significant photochemical degradation, with up to 80 % mass loss within 24 hours of light exposure. Interestingly, we also observed that mass loss always accelerated during irradiation, resulting in an increase of the mass loss rate by about a factor of 10. When we increased relative humidity, the observed particle mass loss rate also increased. This is consistent with strong kinetic transport limitations for highly viscous particles. The PRAD model was tuned to reproduce all experimental results and captured the essential chemistry and transport during irradiation. In particular, the photolysis rate of FeIII, the re-oxidation rate of FeII, HO2· production, and the diffusivity of O2 in aqueous FeIII(Cit)/CA system as function of relative humidity and FeIII(Cit) / CA molar ratio could be constrained. Photochemical degradation under atmospheric conditions predicted by the PRAD model shows that release of CO2 and re-partitioning of organic compounds to the gas phase may be very significant to accurately predict organic aerosol aging processes.


2020 ◽  
Author(s):  
Ulrich Krieger ◽  
Nir Bluvshtein ◽  
Jing Dou

<p>Formation of organic aerosol by oxidation of gas phase compounds has been intensely studied, and is much better understood than the aerosol ageing transformations during the lifetime of organic aerosol. Aerosol ageing influences how those aerosol particles affect climate and human health and is still not well constrained in current models.</p><p>Photochemistry in the condensed phase is an important mechanism responsible for ageing of organic aerosol. In the lower troposphere, where UV light intensity with sufficiently low wavelength to directly photolyze aerosol components is low, indirect photochemistry (catalyzing redox processes of non-absorbing molecules) is especially relevant. Recently we studied transition metal complex photochemistry in single particles levitated in an electrodynamic balance. In particular, we investigated the aqueous iron(III)-citrate/citric acid system and found that irradiation at 473 nm led to rapid and significant degradation of the citric acid. Up to 80% of the initial particle mass was partitioned to the gas phase with the degradation rate depending on kinetic transport limitations of oxygen. These kinetic limitations arise are influenced strongly by the relative humidity dependence of particle viscosity where water acts as a plasticizer.</p><p>Here we will report on photochemical degradation experiments adding various salts in different (ammonium sulfate, ammonium bisulfate, etc.) to the reference system iron(III)-citrate/citric acid. Preliminary experiments suggest that pH of the aerosol particle influences the degradation rate in this system significantly.</p>


2020 ◽  
Vol 636 ◽  
pp. A60 ◽  
Author(s):  
B. Tabone ◽  
B. Godard ◽  
G. Pineau des Forêts ◽  
S. Cabrit ◽  
E. F. van Dishoeck

Context. Recent ALMA observations suggest that the highest velocity part of molecular protostellar jets (≳80 km s−1) are launched from the dust-sublimation regions of the accretion disks (≲0.3 au). However, the formation and survival of molecules in inner protostellar disk winds, in the presence of a harsh far-ultraviolet radiation field and the absence of dust, remains unexplored. Aims. We aim to determine if simple molecules, such as H2, CO, SiO, and H2O, can be synthesized and spared in fast and collimated dust-free disk winds or if a fraction of dust is necessary to explain the observed molecular abundances. Methods. This work is based on a recent version of the Paris-Durham shock code designed to model irradiated environments. Fundamental properties of the dust-free chemistry are investigated from single point models. A laminar 1D disk wind model was then built using a parametric flow geometry. This model includes time-dependent chemistry and the attenuation of the radiation field by gas-phase photoprocesses. The influence of the mass-loss rate of the wind and of the fraction of dust on the synthesis of the molecules and on the attenuation of the radiation field is studied in detail. Results. We show that a small fraction of H2 (≤10−2), which primarily formed through the H− route, can efficiently initiate molecule synthesis, such as CO and SiO above TK ~ 800 K. We also propose new gas-phase formation routes of H2 that can operate in strong visible radiation fields, involving CH+ for instance. The attenuation of the radiation field by atomic species (e.g., C, Si, and S) proceeds through continuum self-shielding. This process ensures the efficient formation of CO, OH, SiO, and H2O through neutral–neutral reactions and the survival of these molecules. Class 0 dust-free winds with high mass-loss rates (Ṁw ≥ 2 × 10−6 M⊙ yr−1) are predicted to be rich in molecules if warm (TK ≥ 800 K). Interestingly, we also predict a steep decrease in the SiO-to-CO abundance ratio with the decline of mass-loss rate, from Class 0 to Class I protostars. The molecular content of disk winds is very sensitive to the presence of dust, and a mass-fraction of surviving dust as small as 10−5 significantly increases the H2O and SiO abundances. Conclusions. Chemistry of high velocity jets is a powerful tool to probe their content in dust and uncover their launching point. Models of internal shocks are required to fully exploit the current (sub)millimeter observations and prepare future JWST observations.


2021 ◽  
Vol 21 (20) ◽  
pp. 15605-15618
Author(s):  
Mariam Fawaz ◽  
Anita Avery ◽  
Timothy B. Onasch ◽  
Leah R. Williams ◽  
Tami C. Bond

Abstract. Emission of organic aerosol (OA) from wood combustion is not well constrained; understanding the governing factors of OA emissions would aid in explaining the reported variability. Pyrolysis of the wood during combustion is the process that produces and releases OA precursors. We performed controlled pyrolysis experiments at representative combustion conditions. The conditions changed were the temperature, wood length, wood moisture content, and wood type. The mass loss of the wood, the particle concentrations, and light-gas concentrations were measured continuously. The experiments were repeatable as shown by a single experiment, performed nine times, in which the real-time particle concentration varied by a maximum of 20 %. Higher temperatures increased the mass loss rate and the released concentration of gases and particles. Large wood size had a lower yield of particles than the small size because of higher mass transfer resistance. Reactions outside the wood became important between 500 and 600 ∘C. Elevated moisture content reduced product formation because heat received was shared between pyrolysis reactions and moisture evaporation. The thermophysical properties, especially the thermal diffusivity, of wood controlled the difference in the mass loss rate and emission among seven wood types. This work demonstrates that OA emission from wood pyrolysis is a deterministic process that depends on transport phenomena.


2021 ◽  
Author(s):  
Mariam Fawaz ◽  
Anita Avery ◽  
Timothy B. Onasch ◽  
Leah R. Williams ◽  
Tami C. Bond

Abstract. Emission of organic aerosol (OA) from wood combustion is not well constrained; understanding the governing factors of OA emissions would aid in explaining the reported variability. Pyrolysis of the wood during combustion is the process that produces and releases OA precursors. We performed controlled pyrolysis experiments at representative combustion conditions. The conditions changed were the temperature, wood length, wood moisture content, and wood type. The mass loss of the wood, the particle concentrations, and light gas concentrations were measured continuously. The experiments were repeatable as shown by a single experiment, performed nine times, in which the real-time particle concentration varied by a maximum of 20 %. Higher temperatures increased the mass loss rate and the released concentration of gases and particles. Large wood size had a lower yield of particles than the small size because of higher mass transfer resistance. Reactions outside the wood became important between 500 and 600 °C. Elevated moisture content reduced product formation because heat received was shared between pyrolysis reactions and moisture evaporation. The thermophysical properties, especially the thermal diffusivity, of wood controlled the difference in the mass loss rate and emission among seven wood types. This work demonstrates that OA emission from wood pyrolysis is a deterministic process that depends on transport phenomena.


2020 ◽  
Vol 635 ◽  
pp. A111
Author(s):  
N. Flagey ◽  
A. F. McLeod ◽  
L. Aguilar ◽  
S. Prunet

Context. We present the very first wide-field, 11′ by 11′, optical spectral mapping of M 16, one of the most famous star-forming regions in the Galaxy. The data were acquired with the new imaging Fourier transform spectrograph SITELLE mounted on the Canada-France-Hawaii Telescope (CFHT). We obtained three spectral cubes with a resolving power of 10 000 (SN1 filter), 1500 (SN2 filter) and 600 (SN3 filter), centered on the iconic Pillars of Creation and the HH 216 flow, covering the main optical nebular emission lines, namely [O II]λ3726,29 (SN1), Hβ, [O III]λ4959,5007 (SN2), [N II]λ6548,84, Hα, and [S II]λ6717,31 (SN3). Aims. We validate the performance, calibration, and data reduction of SITELLE, and analyze the structures in the large field-of-view in terms of their kinematics and nebular emission. Methods. We compared the SITELLE data to MUSE integral field observations and other spectroscopic and narrow-band imaging data to validate the performance of SITELLE. We computed gas-phase metallicities via the strong-line method, performed a pixel-by-pixel fit to the main emission lines to derive kinematics of the ionized gas, computed the mass-loss rate of the Eastern pillar (also known as the Spire), and combined the SITELLE data with near-infrared narrow-band imaging to characterize the HH 216 flow. Results. The comparison with previously published fluxes demonstrates very good agreement. We disentangle the dependence of the gas-phase metallicities (derived via abundance-tracing line ratios) on the degree of ionization and obtain metallicities that are in excellent agreement with the literature. We confirm the bipolar structure of HH 216, find evidence for episodic accretion from the source of the flow, and identify its likely driving source. We compute the mass-loss rate Ṁ of the Spire pillar on the East side of the H II region and find excellent agreement with the correlation between the mass-loss rate and the ionizing photon flux from the nearby cluster NGC 6611.


Sign in / Sign up

Export Citation Format

Share Document