scholarly journals Indicators of Antarctic ozone depletion: 1979 to 2019

2021 ◽  
Vol 21 (7) ◽  
pp. 5289-5300
Author(s):  
Greg E. Bodeker ◽  
Stefanie Kremser

Abstract. The National Institute of Water and Atmospheric Research/Bodeker Scientific (NIWA–BS) total column ozone (TCO) database and the associated BS-filled TCO database have been updated to cover the period 1979 to 2019, bringing both to version 3.5.1 (V3.5.1). The BS-filled database builds on the NIWA–BS database by using a machine-learning algorithm to fill spatial and temporal data gaps to provide gap-free TCO fields over Antarctica. These filled TCO fields then provide a more complete picture of wintertime changes in the ozone layer over Antarctica. The BS-filled database has been used to calculate continuous, homogeneous time series of indicators of Antarctic ozone depletion from 1979 to 2019, including (i) daily values of the ozone mass deficit based on TCO below a 220 DU threshold; (ii) daily measures of the area over Antarctica where TCO levels are below 150 DU, below 220 DU, more than 30 % below 1979 to 1981 climatological means, and more than 50 % below 1979 to 1981 climatological means; (iii) the date of disappearance of 150 DU TCO values, 220 DU TCO values, values 30 % or more below 1979 to 1981 climatological means, and values 50 % or more below 1979 to 1981 climatological means, for each year; and (iv) daily minimum TCO values over the range 75 to 90∘ S equivalent latitude. Since both the NIWA–BS and BS-filled databases provide uncertainties on every TCO value, the Antarctic ozone depletion metrics are provided, for the first time, with fully traceable uncertainties. To gain insight into how the vertical distribution of ozone over Antarctica has changed over the past 36 years, ozone concentrations, combined and homogenized from several satellite-based ozone monitoring instruments as well as the global ozonesonde network, were also analysed. A robust attribution to changes in the drivers of long-term secular variability in these metrics has not been performed in this analysis. As a result, statements about the recovery of Antarctic TCO from the effects of ozone-depleting substances cannot be made. That said, there are clear indications of a change in trend in many of the metrics reported on here around the turn of the century, close to when Antarctic stratospheric concentrations of chlorine and bromine peaked.

2020 ◽  
Author(s):  
Greg E. Bodeker ◽  
Stefanie Kremser

Abstract. The National Institute of Water and Atmospheric Research/Bodeker Scientific (NIWA-BS) total column ozone (TCO) database, and the associated BS-filled TCO database, have been updated to cover the period 1979 to 2019, bringing both to version 3.5.1 (V3.5.1). The BS-filled database builds on the NIWA-BS database by using a machine-learning algorithm to fill spatial and temporal data gaps to provide gap-free TCO fields over Antarctic. These filled TCO fields then provide a more complete picture of winter-time changes in the ozone layer over Antarctica. The BS-filled database has been used to calculate continuous, homogeneous time series of indicators of Antarctic ozone depletion from 1979 to 2019, including (i) daily values of the ozone mass deficit based on TCO below a 220 DU threshold, (ii) daily measures of the area over Antarctica where TCO levels are below 150 DU, below 220 DU, more than 30 % below 1979 to 1981 climatological means, and more than 50 % below 1979 to 1981 climatological means, (iii) the date of disappearance of 150 DU TCO values, 220 DU TCO values, values 30 % or more below 1979 to 1981 climatological means, and values 50 % or more below 1979 to 1981 climatological means, for each year, and (iv) daily minimum TCO values over the range 75° S to 90° S equivalent latitude. Since both the NIWA-BS and BS-filled databases provide uncertainties on every TCO value, the Antarctic ozone depletion metrics are provided, for the first time, with fully traceable uncertainties. To gain insight into how the vertical distribution of ozone over Antarctica has changed over the past 36 years, ozone concentrations, combined and homogenized from several satellite-based ozone monitoring instruments as well as the global ozonesonde network, were also analysed. A robust attribution to changes in the drivers of long-term secular variability in these metrics has not been performed in this analysis. As a result, statements about the recovery of Antarctic TCO from the effects of ozone depleting substances cannot be made. That said, there are clear indications of a change in trend in many of the metrics reported on here around the turn of the century, close to when Antarctic stratospheric concentrations of chlorine and bromine peaked.


2016 ◽  
Vol 16 (24) ◽  
pp. 15619-15627 ◽  
Author(s):  
Ulrike Langematz ◽  
Franziska Schmidt ◽  
Markus Kunze ◽  
Gregory E. Bodeker ◽  
Peter Braesicke

Abstract. The year 1980 has often been used as a benchmark for the return of Antarctic ozone to conditions assumed to be unaffected by emissions of ozone-depleting substances (ODSs), implying that anthropogenic ozone depletion in Antarctica started around 1980. Here, the extent of anthropogenically driven Antarctic ozone depletion prior to 1980 is examined using output from transient chemistry–climate model (CCM) simulations from 1960 to 2000 with prescribed changes of ozone-depleting substance concentrations in conjunction with observations. A regression model is used to attribute CCM modelled and observed changes in Antarctic total column ozone to halogen-driven chemistry prior to 1980. Wintertime Antarctic ozone is strongly affected by dynamical processes that vary in amplitude from year to year and from model to model. However, when the dynamical and chemical impacts on ozone are separated, all models consistently show a long-term, halogen-induced negative trend in Antarctic ozone from 1960 to 1980. The anthropogenically driven ozone loss from 1960 to 1980 ranges between 26.4 ± 3.4 and 49.8 ± 6.2 % of the total anthropogenic ozone depletion from 1960 to 2000. An even stronger ozone decline of 56.4 ± 6.8 % was estimated from ozone observations. This analysis of the observations and simulations from 17 CCMs clarifies that while the return of Antarctic ozone to 1980 values remains a valid milestone, achieving that milestone is not indicative of full recovery of the Antarctic ozone layer from the effects of ODSs.


2016 ◽  
Author(s):  
Ulrike Langematz ◽  
Franziska Schmidt ◽  
Markus Kunze ◽  
Peter Braesicke ◽  
Gregory E. Bodeker

Abstract. The year 1980 has often been used as a benchmark for the return of Antarctic ozone to conditions assumed to be unaffected by emissions of ozone depleting substances (ODSs), implying that anthropogenic ozone depletion in Antarctica started around 1980. Here, the extent of anthropogenically-driven Antarctic ozone depletion prior to 1980 is examined using output from transient Chemistry-Climate Model (CCM) simulations from 1960 to 2000 with prescribed changes of ozone depleting substance concentrations in conjunction with observations. A regression model is used to attribute CCM modelled and observed changes in Antarctic total column ozone to halogen-driven chemistry prior to 1980. Winter-time Antarctic ozone is strongly affected by dynamical processes that vary in amplitude from year to year and from model to model. However, when the dynamical and chemical impacts on ozone are separated, all models consistently show a long-term, halogen-induced negative trend in Antarctic ozone from 1960 to 1980. The anthropogenically-driven ozone loss from 1960 to 1980 ranges between 26.4 ± 3.4 % and 49.8 ± 6.2 % of the total anthropogenic ozone depletion from 1960 to 2000. An even stronger ozone decline of 56.4 ± 6.8 % was estimated from ozone observations. This analysis of the observations and simulations from 17 CCMs clarifies that while the return of Antarctic ozone to 1980 values remains a valid milestone, achieving that milestone is not indicative of full recovery of the Antarctic ozone layer from the effects of ODSs.


2010 ◽  
Vol 10 (16) ◽  
pp. 7697-7707 ◽  
Author(s):  
J. S. Daniel ◽  
E. L. Fleming ◽  
R. W. Portmann ◽  
G. J. M. Velders ◽  
C. H. Jackman ◽  
...  

Abstract. Hypothetical reductions in future emissions of ozone-depleting substances (ODSs) and N2O are evaluated in terms of effects on equivalent effective stratospheric chlorine (EESC), globally-averaged total column ozone, and radiative forcing through 2100. Due to the established success of the Montreal Protocol, these actions can have only a fraction of the impact on ozone depletion that regulations already in force have had. If all anthropogenic ODS and N2O emissions were halted beginning in 2011, ozone is calculated to be higher by about 1–2% during the period 2030–2100 compared to a case of no additional restrictions. Direct radiative forcing by 2100 would be about 0.23 W/m2 lower from the elimination of anthropogenic N2O emissions and about 0.005 W/m2 lower from the destruction of the chlorofluorocarbon (CFC) bank. Due to the potential impact of N2O on future ozone levels, we provide an approach to incorporate it into the EESC formulation, which is used extensively in ozone depletion analyses. The ability of EESC to describe total ozone changes arising from additional ODS and N2O controls is also quantified.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Yu Zhang ◽  
Jing Li ◽  
Libo Zhou

As the most prominent feature of the polar stratosphere, polar vortex results in widespread changes in the climate system, especially in the ozone variation. In this study, the linkage between polar vortex and ozone depletion in Antarctic stratosphere during the period 1979–2016 is investigated; we calculated the averaged total column ozone within the polar vortex based on the vortex edge (−28.8 PVU PV contour) instead of the geographical region defined by latitude and longitude. Results from the spatial patterns of ozone and polar vortex suggest that the morphological changes of polar vortex can impact the horizontal distribution of ozone and the ozone within the polar vortex experiences a severe depletion in spring. The negative relationship between ozone and polar vortex in terms of vortex area, strength, and breakup time is significant with the correlation coefficients of −0.57, −0.68, and −0.76, respectively. The breakup time of polar vortex plays an important role in the relation between polar vortex and ozone depletion with the highest-value correlation coefficient among three polar vortex parameters. Furthermore, the possible mechanism for this relationship is also discussed in this article.


2005 ◽  
Vol 5 (3) ◽  
pp. 3811-3845 ◽  
Author(s):  
G. E. Bodeker ◽  
H. Shiona ◽  
H. Eskes

Abstract. An assimilated data base of total column ozone measurements from satellites has been used to generate a set of indicators describing attributes of the Antarctic ozone hole for the period 1979 to 2003, including (i) daily measures of the area over Antarctica where ozone levels are below 150DU, below 220DU, more than 30% below 1979 to 1981 norms, and more than 50% below 1979 to 1981 norms, (ii) the date of disappearance of 150DU ozone values, 220DU ozone values, values 30% below 1979 to 1981 norms, and values 50% below 1979 to 1981 norms, for each year, (iii) daily minimum total column ozone values over Antarctica, and (iv) daily values of the ozone mass deficit based on a O3<220DU threshold. The assimilated data base combines satellite-based ozone measurements from 4 Total Ozone Mapping Spectrometer (TOMS) instruments, 3 different retrievals from the Global Ozone Monitoring Experiment (GOME), and data from 4 Solar Backscatter Ultra-Violet (SBUV) instruments. Comparisons with the global ground-based Dobson spectrophotometer network are used to remove offsets and drifts between the different data sets to produce a global homogeneous data set that combines the advantages of good spatial coverage of satellite data with good long-term stability of ground-based measurements. One potential use of the derived indices is detection of the expected recovery of the Antarctic ozone hole. The suitability of the derived indicators to this task is discussed in the context of their variability and their susceptibility to saturation effects which makes them less responsive to decreasing stratospheric halogen loading. It is also shown that if the corrections required to match recent Earth Probe TOMS measurements to Dobson measurements are not applied, some of the indictors are affected so as to obscure detection of the recovery of the Antarctic ozone hole.


2005 ◽  
Vol 5 (10) ◽  
pp. 2603-2615 ◽  
Author(s):  
G. E. Bodeker ◽  
H. Shiona ◽  
H. Eskes

Abstract. An assimilated data base of total column ozone measurements from satellites has been used to generate a set of indicators describing attributes of the Antarctic ozone hole for the period 1979 to 2003, including (i) daily measures of the area over Antarctica where ozone levels are below 150 DU, below 220 DU, more than 30% below 1979 to 1981 norms, and more than 50% below 1979 to 1981 norms, (ii) the date of disappearance of 150 DU ozone values, 220 DU ozone values, values 30% below 1979 to 1981 norms, and values 50% below 1979 to 1981 norms, for each year, (iii) daily minimum total column ozone values over Antarctica, and (iv) daily values of the ozone mass deficit based on a O3<220 DU threshold. The assimilated data base combines satellite-based ozone measurements from 4 Total Ozone Mapping Spectrometer (TOMS) instruments, 3 different retrievals from the Global Ozone Monitoring Experiment (GOME), and data from 4 Solar Backscatter Ultra-Violet (SBUV) instruments. Comparisons with the global ground-based Dobson spectrophotometer network are used to remove offsets and drifts between the different data sets to produce a global homogeneous data set that combines the advantages of good spatial coverage of satellite data with good long-term stability of ground-based measurements. One potential use of the derived indices is detection of the expected recovery of the Antarctic ozone hole. The suitability of the derived indicators to this task is discussed in the context of their variability and their susceptibility to saturation effects which makes them less responsive to decreasing stratospheric halogen loading. It is also shown that if the corrections required to match recent Earth Probe TOMS measurements to Dobson measurements are not applied, some of the indictors are affected so as to obscure detection of the recovery of the Antarctic ozone hole.


2021 ◽  
Author(s):  
Lily Zhang ◽  
Susan Solomon ◽  
Kane Stone ◽  
John Burrows ◽  
Steve Colwell ◽  
...  

&lt;p&gt;Measurements by the Dobson ozone spectrophotometer at the British Antarctic Survey&amp;#8217;s (BAS) Halley research station form a record of Antarctic total column ozone that dates back to 1956. Due to its location, length, and completeness, the record has been, and continues to be, uniquely important for studies of long-term changes in Antarctic ozone. However, a crack in the ice shelf on which it resides forced the station to abruptly close for eight months and [SC-UB1]&amp;#160; led to a gap in its historic record. &amp;#160;We develop and test a method for filling in the record of Halley total ozone by combining and bias-correcting overpass data from a range of different satellite instruments. Tests suggest that our method reproduces the monthly ground-based Dobson total ozone values to within 20 Dobson units.&amp;#160; We show that our approach improves on the overall performance as compared to simply using the raw satellite average or an individual instrument. The method also provides a check on the consistency of the automated Dobson used at Halley after 2018 compared to earlier manual Dobson data, and suggests a significant difference between the two.&amp;#160; The filled Halley dataset provides further support that the Antarctic ozone hole is healing not only during September, but also in January.&lt;/p&gt;


2021 ◽  
Author(s):  
Lily N. Zhang ◽  
Susan Solomon ◽  
Kane A. Stone ◽  
Jonathan D. Shanklin ◽  
Joshua D. Eveson ◽  
...  

Abstract. Measurements by the Dobson ozone spectrophotometer at the British Antarctic Survey's (BAS) Halley research station form a record of Antarctic total column ozone that dates back to 1956. Due to its location, length, and completeness, the record has been, and continues to be, uniquely important for studies of long-term changes in Antarctic ozone. However, a crack in the ice shelf on which it resides forced the station to abruptly close, leading to a gap of two ozone hole seasons in its historic record. We develop and test a method for filling in the record of Halley total ozone by combining and adjusting overpass data from a range of different satellite instruments. Tests suggest that our method reproduces the monthly ground-based Dobson total ozone values to within an average of 2 Dobson units. We show that our approach improves on the overall performance as compared to simply using the raw satellite average or data from a single satellite instrument. The method also provides a check on the consistency of the provisional data from the automated Dobson used at Halley after 2018 with earlier manual Dobson data, and suggests that there was a significant difference between the two. The filled Halley dataset provides further support that the Antarctic ozone hole is healing, not only during September, but also in January.


2021 ◽  
Vol 21 (12) ◽  
pp. 9829-9838
Author(s):  
Lily N. Zhang ◽  
Susan Solomon ◽  
Kane A. Stone ◽  
Jonathan D. Shanklin ◽  
Joshua D. Eveson ◽  
...  

Abstract. Measurements by the Dobson ozone spectrophotometer at the British Antarctic Survey's (BAS) Halley research station form a record of Antarctic total column ozone that dates back to 1956. Due to its location, length, and completeness, the record has been, and continues to be, uniquely important for studies of long-term changes in Antarctic ozone. However, a crack in the ice shelf on which it resides forced the station to abruptly close in February of 2017, leading to a gap of two ozone hole seasons in its historic record. We develop and test a method for filling in the record of Halley total ozone by combining and adjusting overpass data from a range of different satellite instruments. Comparisons to the Dobson suggest that our method reproduces monthly ground-based total ozone values with an average difference of 1.1 ± 6.2 DU for the satellites used to fill in the 2017–2018 gap. We show that our approach more closely reproduces the Dobson measurements than simply using the raw satellite average or data from a single satellite instrument. The method also provides a check on the consistency of the provisional data from the automated Dobson used at Halley after 2018 with earlier manual Dobson data and suggests that there were likely inconsistencies between the two. The filled Halley dataset provides further support that the Antarctic ozone hole is healing, not only during September but also in January.


Sign in / Sign up

Export Citation Format

Share Document