scholarly journals The middle atmospheric meridional circulation for 2002–2012 derived from MIPAS observations

2021 ◽  
Vol 21 (11) ◽  
pp. 8823-8843
Author(s):  
Thomas von Clarmann ◽  
Udo Grabowski ◽  
Gabriele P. Stiller ◽  
Beatriz M. Monge-Sanz ◽  
Norbert Glatthor ◽  
...  

Abstract. Measurements of long-lived trace gases (SF6, CFC-11, CFC-12, HCFC-22, CCl4, N2O, CH4, H2O, and CO) performed with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) have been used to infer the stratospheric and mesospheric meridional circulation. The MIPAS data set covers the time period from July 2002 to April 2012. The method used for this purpose was the direct inversion of the two-dimensional continuity equation for the concentrations of trace gases and air density. This inversion predicts an “effective velocity” that gives the best fit for the evolution of the concentrations on the assumption that an explicit treatment of Fickian diffusion can be neglected. These effective velocity fields are used to characterize the mean meridional circulation. Multiannual monthly mean effective velocity fields are presented, along with their variabilities. According to this measure, the stratospheric circulation is found to be highly variable over the year, with a quite robust annual cycle. The new method allows us to track the evolution of various circulation patterns over the year in more detail than before. According to the effective velocity characterization of the circulation, the deep branch of the Brewer–Dobson circulation and the mesospheric overturning pole-to-pole circulation are not separate but intertwined phenomena. The latitude of stratospheric uplift in the middle and upper stratosphere is found to be quite variable and is not always found at equatorial latitudes. The usual schematic of stratospheric circulation with the deep and the shallow branch of the Brewer–Dobson circulation and the mesospheric overturning circulation is an idealization which best describes the observed atmosphere around equinox. Sudden stratospheric warmings and the quasi-biennial oscillation cause a pronounced year-to-year variability of the meridional circulation.

2019 ◽  
Author(s):  
Thomas von Clarmann ◽  
Udo Grabowski ◽  
Gabriele P. Stiller ◽  
Beatriz M. Monge-Sanz ◽  
Norbert Glatthor ◽  
...  

Abstract. Measurements of long-lived trace gases (SF6, CFC-11, CFC-12, HCFC-12, CCl4, N2O, CH4, H2O, and CO) performed with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) have been used to infer the stratospheric and mesospheric meridional circulation. The MIPAS data set covers the time period from July 2002 to April 2012. The method used for this purpose was the direct inversion of the two-dimensional continuity equation. Monthly climatologies of circulation fields are presented along with their variabilities. Stratospheric circulation is found to be highly variable over the year, with a quite robust annual cycle. The new method allows to track the evolution of various circulation patterns over the year in more detail than before.The deep branch of the Brewer-Dobson circulation and the mesospheric overturning pole-to-pole circulation are no separate but intertwined phenomena. The latitude of stratospheric uplift in the middle and upper stratosphere is found to be quite variable and is not always found at tropical latitudes. The usual schematic of stratospheric circulation with the deep and the shallow branch of the Brewer-Dobson circulation and the mesospheric overturning circulation is an idealization which best describes the observed atmosphere around Equinox. Sudden stratospheric warmings cause increased year-to year variability.


2017 ◽  
Vol 17 (11) ◽  
pp. 6813-6823 ◽  
Author(s):  
Olga V. Tweedy ◽  
Natalya A. Kramarova ◽  
Susan E. Strahan ◽  
Paul A. Newman ◽  
Lawrence Coy ◽  
...  

Abstract. The quasi-biennial oscillation (QBO) is a quasiperiodic alternation between easterly and westerly zonal winds in the tropical stratosphere, propagating downward from the middle stratosphere to the tropopause with a period that varies from 24 to 32 months ( ∼  28 months on average). The QBO wind oscillations affect the distribution of chemical constituents, such as ozone (O3), water vapor (H2O), nitrous oxide (N2O), and hydrochloric acid (HCl), through the QBO-induced meridional circulation. In the 2015–2016 winter, radiosonde observations revealed an anomaly in the downward propagation of the westerly phase, which was disrupted by the upward displacement of the westerly phase from  ∼  30 hPa up to 15 hPa and the sudden appearance of easterlies at 40 hPa. Such a disruption is unprecedented in the observational record from 1953 to the present. In this study we show the response of trace gases to this QBO disruption using O3, HCl, H2O, and temperature from the Aura Microwave Limb Sounder (MLS) and total ozone measurements from the Solar Backscatter Ultraviolet (SBUV) Merged Ozone Data Set (MOD). Results reveal the development of positive anomalies in stratospheric equatorial O3 and HCl over  ∼  50–30 hPa in May–September of 2016 and a substantial decrease in O3 in the subtropics of both hemispheres. The SBUV observations show near-record low levels of column ozone in the subtropics in 2016, resulting in an increase in the surface UV index during northern summer. Furthermore, cold temperature anomalies near the tropical tropopause result in a global decrease in stratospheric water vapor.


2016 ◽  
Vol 29 (14) ◽  
pp. 5339-5354 ◽  
Author(s):  
Lawrence Coy ◽  
Krzysztof Wargan ◽  
Andrea M. Molod ◽  
William R. McCarty ◽  
Steven Pawson

Abstract The structure, dynamics, and ozone signal of the quasi-biennial oscillation (QBO) produced by the 35-yr NASA Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), are examined based on monthly mean output. Along with the analysis of the QBO in assimilation winds and ozone, the QBO forcings created by assimilated observations, dynamics, parameterized gravity wave drag (GWD), and ozone chemistry parameterization are examined and compared with the original MERRA system. Results show that MERRA-2 produces a realistic QBO in the zonal winds, mean meridional circulation, and ozone over the 1980–2015 time period. In particular, the MERRA-2 zonal winds show improved representation of the QBO 50-hPa westerly phase amplitude at Singapore when compared to MERRA. The use of limb ozone observations creates improved vertical structure and realistic downward propagation of the ozone QBO signal during times when the MLS ozone limb observations are available (from October 2004 to present). The increased equatorial GWD in MERRA-2 has reduced the zonal wind data analysis contribution compared to MERRA so that the QBO mean meridional circulation can be expected to be more physically forced and therefore more physically consistent. This can be important for applications in which MERRA-2 winds are used to drive transport experiments.


2017 ◽  
Author(s):  
Olga V. Tweedy ◽  
Natalya A. Kramarova ◽  
Susan E. Strahan ◽  
Paul A. Newman ◽  
Lawrence Coy ◽  
...  

Abstract. The quasi-biennial oscillation (QBO) is a quasi-periodic alternation between easterly and westerly zonal winds in the tropical stratosphere, propagating downward from the middle stratosphere to the tropopause with a period that varies from 24 to 32 months (∼28 months on average). The QBO wind oscillations affect the distribution of chemical constituents, such as ozone (O3), water vapor (H2O), nitrous oxide (N2O) and hydrochloric acid (HCl), through the QBO induced meridional circulation. In the 2015–2016 winter, radiosonde observations revealed an anomaly in the downward propagation of the westerly phase, which was disrupted by the upward displacement of the westerly phase from ∼30 hPa up to 15 hPa, and the sudden appearance of easterlies at 40 hPa. Such a disruption is unprecedented in the observational record from 1953–present. In this study we show the response of trace gases to this QBO disruption using O3, HCl, H2O and temperature from the Aura Microwave Limb Sounder (MLS) and total ozone measurements from the Solar Backscatter Ultraviolet (SBUV) Merged Ozone Data Set (MOD). Results reveal development of positive anomalies in stratospheric equatorial O3 and HCl over ∼50–30 hPa in May–September of 2016 and a substantial decrease in O3 in the subtropics of both hemispheres. The SBUV observations show near record low levels of column ozone in the subtropics in 2016, resulting in an increase of surface UV index during northern summer. Furthermore, cold temperature anomalies near the tropical tropopause result in a global decrease in stratospheric water vapor.


2011 ◽  
Vol 11 (20) ◽  
pp. 10579-10598 ◽  
Author(s):  
E. Palazzi ◽  
F. Fierli ◽  
G. P. Stiller ◽  
J. Urban

Abstract. Past studies have shown that a clear relationship exists between the field of a passive tracer and the Probability Distribution Function (PDF) of tracer concentrations, which can be exploited to identify the position and variability of stratospheric barriers to isentropic mixing. In the present study, we focus on the dynamical barrier located in the subtropics. We calculate PDFs of the long-lived tracers nitrous oxide (N2O) and methane (CH4) from different satellite instruments: the Microwave Limb Sounder (MLS) on board Aura, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board Envisat, the Sub-Millimetre Radiometre (SMR) on board Odin and the Halogen Occultation Experiment (HALOE) on board UARS, overall covering the time period of 1992–2009. An analysis of the consistency among the different sets of data and their capability of identifying mixing regions and barrier-to-transport regions in the stratosphere and the subtropical barrier location is a prime aim of the present study. This is done looking at the morphological structure of the one- and two-dimensional PDFs of tracer concentrations measured by the different instruments. The latter differ in their spatial and temporal sampling and resolution, and there are some systematic differences in the determination of the subtropical barrier position that have been highlighted. However, the four satellite instruments offer an overall consistent picture of the subtropical barrier annual cycle. There is a strong seasonality consistently represented, characterized by the wintertime shift of the subtropical edge toward the summer hemisphere. However, the influence of the Quasi Biennial Oscillation (QBO) on isentropic transport and mixing, and by consequence, on the position of the subtropical barrier, is not equally represented in all satellite data using the methodology proposed.


2016 ◽  
Author(s):  
Cristen Adams ◽  
Adam E. Bourassa ◽  
Chris A. McLinden ◽  
Chris E. Sioris ◽  
Thomas von Clarmann ◽  
...  

Abstract. Following the large volcanic eruptions of Pinatubo in 1991 and El Chichón in 1982, decreases in stratospheric NO2 associated with enhanced aerosol were observed. The Optical Spectrograph and InfraRed Imaging Spectrometer (OSIRIS) likewise measured widespread enhancements of stratospheric aerosol following seven volcanic eruptions between 2002 and 2014, although the magnitudes of these eruptions were all much smaller than the Pinatubo and El Chichón eruptions. In order to isolate and quantify the relationship between volcanic aerosol and NO2, NO2 anomalies were calculated using measurements from OSIRIS and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). In the tropics, variability due to the quasi-biennial oscillation was subtracted from the timeseries. OSIRIS profile measurements indicate that the strongest relationships between NO2 and volcanic aerosol extinction were for the layer ~ 3–7 km above the tropopause, where OSIRIS stratospheric NO2 partial columns for ~ 3–7 km above the tropopause were found to be smaller than baseline levels during these aerosol enhancements by up to ~ 60 % with typical Pearson correlation coefficients of R ~ −0.7. MIPAS also observed decreases in NO2 partial columns during periods of affected by volcanic aerosol, with percent differences of up to ~ 25 %. An even stronger relationship was observed between OSIRIS aerosol optical depth and MIPAS N2O5 partial columns, with R ~ −0.9, although no link with MIPAS HNO3 was observed. The variation of OSIRIS NO2 with increasing aerosol was found to be quantitatively consistent with simulations from a photochemical box model in terms of both magnitude and degree of non-linearity.


2016 ◽  
Author(s):  
Norbert Glatthor ◽  
Michael Höpfner ◽  
Adrian Leyser ◽  
Gabriele P. Stiller ◽  
Thomas von Clarmann ◽  
...  

Abstract. We present a global OCS data set covering the period June 2002 to April 2012, derived from FTIR limb emission spectra measured with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on the ENVISAT satellite. The vertical resolution is 4–5 km in the height region 6–15 km and 15 km at 40 km altitude. The total estimated error amounts to 40–50 pptv between 10 and 20 km and to 120 pptv at 40 km altitude. MIPAS OCS data show no systematic bias with respect to balloon observations, with deviations mostly below ±50 pptv. However, they are systematically higher than the OCS volume mixing ratios of the ACE-FTS instrument on SCISAT, with maximum deviations of up to 100 pptv in the altitude region 13–16 km. The data set of MIPAS OCS exhibits only moderate interannual variations and low interhemispheric differences. Average concentrations at 10 km altitude range from 480 pptv at high latitudes to 500–510 pptv in the tropics and at northern mid-latitudes. Seasonal variations at 10 km altitude amount up to 35 pptv in the northern and up to 15 pptv in the southern hemisphere. Northern hemispheric OCS abundances at 10 km altitude peak in June in the tropics and around October at high latitudes, while the respective southern hemispheric maxima were observed in July and in November. Global OCS distributions at 250 hPa (~ 10–11 km) show enhanced values at low latitudes, peaking during boreal summer above the western Pacific and the Indian Ocean, which indicates oceanic release. Further, a region of depleted OCS amounts extending from Brazil to central and southern Africa was detected at this altitude, which is most pronounced in austral summer. This depletion is related to seasonally varying vegetative uptake by the tropical forests. Typical signatures of biomass burning like the southern hemispheric biomass burning plume are not visible in MIPAS data, indicating that this process is only a minor source of tropospheric OCS. At the 150 hPa level (~ 13–14 km) enhanced amounts of OCS were also observed inside the Asian Monsoon Anticyclone, but this enhancement is not especially outstanding as compared to other low latitude regions at the same altitude. At the 80 hPa level (~ 17–18 km) equatorward transport of mid-latitude air masses containing lower OCS amounts around the summertime anticyclones was observed. A significant trend could not be detected in tropospheric MIPAS OCS amounts, which points to globally balanced sources and sinks.


2011 ◽  
Vol 68 (1) ◽  
pp. 139-154 ◽  
Author(s):  
Rolando R. Garcia ◽  
William J. Randel ◽  
Douglas E. Kinnison

Abstract Trace chemical species have been used in numerical models to calculate the age of air (AOA), which is a measure of the strength of the mean meridional circulation. The trend in the AOA has also been computed and found to be negative in simulations where greenhouse gases increase with time, which is consistent with the acceleration of the mean meridional circulation calculated under these conditions. This modeling result has been tested recently using observations of SF6, a very long lived species whose atmospheric concentration has increased rapidly over the last half century, and of CO2, which is also very long lived and increasing with time. Surprisingly, the AOA estimated from these gases exhibits no significant trend over the period 1975–2005. Here the Whole Atmosphere Community Climate Model (WACCM) is used to derive estimates of the AOA from SF6 and CO2 over the period 1965–2006. The calculated AOA yields trends that are smaller than the trend derived from a synthetic, linearly growing tracer, even after accounting for the nonlinear growth rates of SF6 and CO2. A simplified global transport model and analytical arguments are used to show that this follows from the variable growth rate of these species. It is also shown that, when AOA is sampled sparsely as in the observations, the resulting trends have very large error bars and are statistically undistinguishable from zero. These results suggest that trends in the AOA are difficult to estimate unambiguously except for well-sampled tracers that increase linearly and uniformly. While such tracers can be defined in numerical models, there are no naturally occurring species that exhibit such idealized behavior.


2017 ◽  
Vol 17 (18) ◽  
pp. 11521-11539 ◽  
Author(s):  
Stefan Lossow ◽  
Hella Garny ◽  
Patrick Jöckel

Abstract. The amplitude of the annual variation in water vapour exhibits a distinct isolated maximum in the middle and upper stratosphere in the southern tropics and subtropics, peaking typically around 15° S in latitude and close to 3 hPa (∼  40.5 km) in altitude. This enhanced annual variation is primarily related to the Brewer–Dobson circulation and hence also visible in other trace gases. So far this feature has not gained much attention in the literature and the present work aims to add more prominence. Using Envisat/MIPAS (Environmental Satellite/Michelson Interferometer for Passive Atmospheric Sounding) observations and ECHAM/MESSy (European Centre for Medium-Range Weather Forecasts Hamburg/Modular Earth Submodel System) Atmospheric Chemistry (EMAC) simulations we provide a dedicated illustration and a full account of the reasons for this enhanced annual variation.


Sign in / Sign up

Export Citation Format

Share Document