scholarly journals Direct measurement of particle formation and growth from the oxidation of biogenic emissions

2006 ◽  
Vol 6 (12) ◽  
pp. 4403-4413 ◽  
Author(s):  
T. M. VanReken ◽  
J. P. Greenberg ◽  
P. C. Harley ◽  
A. B. Guenther ◽  
J. N. Smith

Abstract. A new facility has been developed to investigate the formation of new particles from the oxidation of volatile organic compounds emitted from vegetation. The facility consists of a biogenic emissions enclosure, an aerosol growth chamber, and the associated instrumentation. Using the facility, new particle formation events have been induced through the reaction of ozone with three different precursor gas mixtures: an α-pinene test mixture and the emissions of a Holm oak (Quercus ilex) specimen and a loblolly pine (Pinus taeda) specimen. The results demonstrate the variability between species in their potential to form new aerosol products. The emissions of Q. ilex specimen resulted in fewer particles than did α-pinene, although the concentration of monoterpenes was roughly equal in both experiments before the addition of ozone. Conversely, the oxidation of P. taeda specimen emissions led to the formation of more particles than either of the other two gas mixtures, despite a lower initial terpenoid concentration. These variations can be attributed to differences in the speciation of the vegetative emissions with respect to the α-pinene mixture and to each other. Specifically, the presence of β-pinene and other slower-reacting monoterpenes probably inhibited particle formation in the Q. ilex experiment, while the presence of sesquiterpenes, including β-caryophyllene, in the emissions of the P. taeda specimen were the likely cause of the more intense particle formation events observed during that experiment.

2006 ◽  
Vol 6 (4) ◽  
pp. 6587-6612 ◽  
Author(s):  
T. M. VanReken ◽  
J. P. Greenberg ◽  
P. C. Harley ◽  
A. B. Guenther ◽  
J. N. Smith

Abstract. A new facility has been developed to investigate the formation of new particles from the oxidation of volatile organic compounds emitted from vegetation. The facility consists of a biogenic emissions enclosure, an aerosol growth chamber, and the associated instrumentation. Using the facility, new particle formation events have been induced through the reaction of ozone with three different precursor gas mixtures: an α-pinene test mixture and the emissions of Holm oak (Quercus ilex) and loblolly pine (Pinus taeda). The results demonstrate the variability between species in their potential to form new aerosol products. The emissions of Q. ilex resulted in fewer particles than did α-pinene, although the concentration of monoterpenes was roughly equal in both experiments before the addition of ozone. Conversely, the oxidation of P. taeda emissions led to the formation of more particles than either of the other two gas mixtures, despite a lower initial terpenoid concentration. These variations can be attributed to differences in the speciation of the vegetative emissions with respect to the α-pinene mixture and to each other. Specifically, the presence of β-pinene and other slower-reacting monoterpenes inhibited particle formation in the Q. ilex experiment, while the presence of sesquiterpenes, including β-caryophyllene, in the emissions of P. taeda were the likely cause of the more intense particle formation events observed during that experiment.


2010 ◽  
Vol 10 (5) ◽  
pp. 11615-11657 ◽  
Author(s):  
C.-H. Jeong ◽  
G. J. Evans ◽  
M. L. McGuire ◽  
R. Y.-W. Chang ◽  
J. P. D. Abbatt ◽  
...  

Abstract. Ultrafine particle (UFP) number and size distributions were simultaneously measured at five urban and rural sites in Southern Ontario, Canada as part of the Border Air Quality and Meteorology Study (BAQS-Met 2007). Particle formation and growth events at these five sites were classified based on their strength and persistence as well as the variation in geometric mean diameter. Regional nucleation and growth events and local short-lived strong nucleation events were frequently observed at the near-border rural sites, upwind of industrial sources. Surprisingly, the particle number concentrations at one of these sites were higher than the concentrations at a downtown site in a major city, despite its high traffic density. Regional nucleation and growth events were favored at intense solar irradiance and less polluted cooler drier air. The most distinctive regional particle nucleation and growth event during the campaign was observed simultaneously at all five sites, which were up to 350 km apart. Although the ultrafine particle concentrations and size distributions generally were spatially heterogeneous across the region, a more uniform spatial distribution of UFP across the five areas was observed during this regional nucleation event. Thus, nucleation events can cover large regions, contributing to the burden of UFP in cities and potentially to the associated health impacts on urban populations. In addition, particle formation in southwestern Ontario appears to more often be related to anthropogenic gaseous emissions, although biogenic emissions may at times contribute. Local short-lived nucleation events at the near-border sites during this three-week campaign were associated with high SO2, which likely originated from US and Canadian industrial sources. These particle formation events may contribute to the production of cloud condensation nuclei, thus potentially influencing regional climate. Longer-term studies are needed to help resolve the relative contributions of anthropogenic and biogenic emissions to nucleation and growth in this region.


2018 ◽  
Vol 4 (12) ◽  
pp. eaau5363 ◽  
Author(s):  
Katrianne Lehtipalo ◽  
Chao Yan ◽  
Lubna Dada ◽  
Federico Bianchi ◽  
Mao Xiao ◽  
...  

A major fraction of atmospheric aerosol particles, which affect both air quality and climate, form from gaseous precursors in the atmosphere. Highly oxygenated organic molecules (HOMs), formed by oxidation of biogenic volatile organic compounds, are known to participate in particle formation and growth. However, it is not well understood how they interact with atmospheric pollutants, such as nitrogen oxides (NOx) and sulfur oxides (SOx) from fossil fuel combustion, as well as ammonia (NH3) from livestock and fertilizers. Here, we show how NOxsuppresses particle formation, while HOMs, sulfuric acid, and NH3have a synergistic enhancing effect on particle formation. We postulate a novel mechanism, involving HOMs, sulfuric acid, and ammonia, which is able to closely reproduce observations of particle formation and growth in daytime boreal forest and similar environments. The findings elucidate the complex interactions between biogenic and anthropogenic vapors in the atmospheric aerosol system.


2010 ◽  
Vol 10 (16) ◽  
pp. 7979-7995 ◽  
Author(s):  
C.-H. Jeong ◽  
G. J. Evans ◽  
M. L. McGuire ◽  
R. Y.-W. Chang ◽  
J. P. D. Abbatt ◽  
...  

Abstract. Ultrafine particle (UFP) number and size distributions were simultaneously measured at five urban and rural sites during the summer of 2007 in Ontario, Canada as part of the Border Air Quality and Meteorology Study (BAQS-Met 2007). Particle formation and growth events at these five sites were classified based on their strength and persistence as well as the variation in geometric mean diameter. Regional nucleation and growth events and local short-lived strong nucleation events were frequently observed at the near-border rural sites, upwind of industrial sources. Surprisingly, the particle number concentrations at one of these sites were higher than the concentrations at a downtown site in a major city, despite its high traffic density. Regional nucleation and growth events were favored during intense solar irradiance and in less polluted cooler drier air. The most distinctive regional particle nucleation and growth event during the campaign was observed simultaneously at all five sites, which were up to 350 km apart. Although the ultrafine particle concentrations and size distributions generally were spatially heterogeneous across the region, a more uniform spatial distribution of UFP across the five areas was observed during this regional nucleation event. Thus, nucleation events can cover large regions, contributing to the burden of UFP in cities and potentially to the associated health impacts on urban populations. Local short-lived nucleation events at the three near-border sites during this summer three-week campaign were associated with high SO2, which likely originated from US and Canadian industrial sources. Hence, particle formation in southwestern Ontario appears to often be related to anthropogenic gaseous emissions but biogenic emissions at times also contribute. Longer-term studies are needed to help resolve the relative contributions of anthropogenic and biogenic emissions to nucleation and growth in this region.


Genetics ◽  
1999 ◽  
Vol 151 (1) ◽  
pp. 321-330 ◽  
Author(s):  
Mitchell M Sewell ◽  
Bradley K Sherman ◽  
David B Neale

Abstract A consensus map for loblolly pine (Pinus taeda L.) was constructed from the integration of linkage data from two unrelated three-generation outbred pedigrees. The progeny segregation data from restriction fragment length polymorphism, random amplified polymorphic DNA, and isozyme genetic markers from each pedigree were recoded to reflect the two independent populations of parental meioses, and genetic maps were constructed to represent each parent. The rate of meiotic recombination was significantly greater for males than females, as was the average estimate of genome length for males {1983.7 cM [Kosambi mapping function (K)]} and females [1339.5 cM(K)]. The integration of individual maps allows for the synthesis of genetic information from independent sources onto a single consensus map and facilitates the consolidation of linkage groups to represent the chromosomes (n = 12) of loblolly pine. The resulting consensus map consists of 357 unique molecular markers and covers ∼1300 cM(K).


2021 ◽  
Vol 491 ◽  
pp. 119176
Author(s):  
Michael A. Blazier ◽  
Thomas Hennessey ◽  
Laurence Schimleck ◽  
Scott Abbey ◽  
Ryan Holbrook ◽  
...  

1998 ◽  
Vol 22 (4) ◽  
pp. 222-226 ◽  
Author(s):  
W. Michael Aust ◽  
James A. Burger ◽  
William H. McKee ◽  
Gregory A. Scheerer ◽  
Mark D. Tippett

Abstract Wet-weather harvesting operations on wet pine fiats can cause soil disturbances that may reduce long-term site productivity. Site preparation and fertilization are often recommended as ameliorative practices for such disturbances, but few studies have actually quantified their effects on restoration. The purposes of this study were to quantify the effects of wet-weather harvest traffic in designated skid trails on soil properties and loblolly pine (Pinus taeda) growth, and to evaluate the ameliorative effects of site preparation. Study sites were established on wet pine flats of the lower Coastal Plain within the Francis Marion National Forest (Berkeley County, SC). Treatments were arranged in a split-split plot within a randomized complete block design. Treatments were two levels of traffic (nontrafficked, trafficked), four levels of mechanical site preparation (none, disking, bedding, disking + bedding), and two levels of fertilization (none, 337 kg /ha of 10-10-10 fertilizer). initially, the trafficking increased soil bulk densities and reduced soil water movement and subsequent growth of loblolly pine (years 1 and 2). Bedding combined with fertilization restored site productivity to non trafficked levels within 4 yr, but disking or fertilization treatments alone were not effective at ameliorating the traffic effects. The effectiveness of the bedding and fertilization treatments for amelioration of traffic effects was probably facilitated by the relatively small area of disturbed skid trails (<10%) found on these sites. Areas having more severe disturbance or higher percentages of disturbance might not be ameliorated as rapidly. South. J. Appl. For. 22(4):222-226.


1997 ◽  
Vol 21 (3) ◽  
pp. 116-122 ◽  
Author(s):  
Thomas A. Waldrop

Abstract Four variations of the fell-and-burn technique, a system developed to produce mixed pine-hardwood stands in the Southern Appalachian Mountains, were compared in the Piedmont region. All variations of this technique successfully improved the commercial value of low-quality hardwood stands by introducing a pine component. After six growing seasons, loblolly pine (Pinus taeda L.) occupied the dominant crown position and oaks the codominant position in fell-and-burn treated stands on poor to medium quality sites. The precise timing of felling residual stems, as prescribed by the fell-and-burn technique, may be flexible because winter and spring felling produced similar results. Although summer site preparation burns reduced hardwood height growth by reducing the length of the first growing season, they did not improve pine survival or growth. Pines were as tall as hardwoods within four growing seasons in burned plots and within six growing seasons in unburned plots. Additional research is needed to determine the level or intensity of site preparation needed to establish pine-hardwood mixtures over a range of site conditions. South. J. Appl. For. 21(3):116-122.


Sign in / Sign up

Export Citation Format

Share Document