scholarly journals Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors

2018 ◽  
Vol 4 (12) ◽  
pp. eaau5363 ◽  
Author(s):  
Katrianne Lehtipalo ◽  
Chao Yan ◽  
Lubna Dada ◽  
Federico Bianchi ◽  
Mao Xiao ◽  
...  

A major fraction of atmospheric aerosol particles, which affect both air quality and climate, form from gaseous precursors in the atmosphere. Highly oxygenated organic molecules (HOMs), formed by oxidation of biogenic volatile organic compounds, are known to participate in particle formation and growth. However, it is not well understood how they interact with atmospheric pollutants, such as nitrogen oxides (NOx) and sulfur oxides (SOx) from fossil fuel combustion, as well as ammonia (NH3) from livestock and fertilizers. Here, we show how NOxsuppresses particle formation, while HOMs, sulfuric acid, and NH3have a synergistic enhancing effect on particle formation. We postulate a novel mechanism, involving HOMs, sulfuric acid, and ammonia, which is able to closely reproduce observations of particle formation and growth in daytime boreal forest and similar environments. The findings elucidate the complex interactions between biogenic and anthropogenic vapors in the atmospheric aerosol system.

2002 ◽  
Vol 2 (5) ◽  
pp. 1791-1807 ◽  
Author(s):  
K. E. J. Lehtinen ◽  
M. Kulmala

Abstract. The formation and growth of atmospheric aerosol particles is considered using an exact discrete method with molecular resolution in size space. The method is immune to numerical diffusion problems that are a nuisance for typical simulation methods using a sectional representation for the particle size distribution. For condensational growth, a slight modification is proposed for the Fuchs-Sutugin expression, which improves the prediction of the growth rate of nano-sized particles by as much as a factor of two. The presented method is applied to particle formation in a Finnish Boreal forest and is shown to capture the essential features of the dynamics quite nicely. Furthermore, it is shown that the growth of the particles is roughly linear, which means that the amount of condensable vapour is constant (of the order 1013 1/m3).


2019 ◽  
Vol 19 (23) ◽  
pp. 15073-15086 ◽  
Author(s):  
Epameinondas Tsiligiannis ◽  
Julia Hammes ◽  
Christian Mark Salvador ◽  
Thomas F. Mentel ◽  
Mattias Hallquist

Abstract. Secondary organic aerosol (SOA) represents a significant fraction of the tropospheric aerosol and its precursors are volatile organic compounds (VOCs). Anthropogenic VOCs (AVOC) dominate the VOC budget in many urban areas with 1,3,5-trimethylbenzene (TMB) being among the most reactive aromatic AVOCs. TMB formed highly oxygenated organic molecules (HOMs) in an NOx-free environment, which could contribute to new particle formation (NPF) depending on oxidation conditions where elevated OH oxidation enhanced particle formation. The experiments were performed in an oxidation flow reactor, the Go:PAM unit, under controlled OH oxidation conditions. By addition of NOx to the system we investigated the effect of NOx on particle formation and on the product distribution. We show that the formation of HOMs, and especially HOM accretion products, strongly varies with NOx conditions. We observe a suppression of HOM and particle formation with increasing NOx/ΔTMB ratio and an increase in the formation of organonitrates (ONs) mostly at the expense of HOM accretion products. We propose reaction mechanisms and pathways that explain the formation and observed product distributions with respect to oxidation conditions. We hypothesise that, based on our findings from TMB oxidation studies, aromatic AVOCs may not contribute significantly to NPF under typical NOx/AVOC conditions found in urban atmospheres.


2009 ◽  
Vol 9 (14) ◽  
pp. 4729-4745 ◽  
Author(s):  
V. Fiedler ◽  
F. Arnold ◽  
H. Schlager ◽  
A. Dörnbrack ◽  
L. Pirjola ◽  
...  

Abstract. We report on the first observation-based case study of an aged East Asian anthropogenic SO2 pollution plume over Europe. Our airborne measurements in that plume detected highly elevated SO2 mole fractions (up to 900 pmol/mol) between about 5000 and 7000 m altitude. Here, we focus on investigations of the origin, dispersion, evolution, conversion, and potential impact of the observed excess SO2. In particular, we investigate SO2 conversion to gas-phase sulfuric acid and sulfuric acid aerosols. Our FLEXPART and LAGRANTO model simulations, along with additional trace gas measurements, suggest that the plume originated from East Asian fossil fuel combustion sources and, 8–7 days prior to its arrival over Europe, ascended over the coast region of central East Asia to 9000 m altitude, probably in a cyclonic system with an associated warm conveyor belt. During this initial plume ascent a substantial fraction of the initially available SO2 must have escaped from removal by cloud processes. Hereafter, while mostly descending slowly, the plume experienced advection across the North Pacific, North America and the North Atlantic. During its upper troposphere travel, clouds were absent in and above the plume and OH-induced gas-phase conversion of SO2 to gas-phase sulfuric acid (GSA) was operative, followed by GSA nucleation and condensation leading to sulfuric acid aerosol formation and growth. Our AEROFOR model simulations indicate that numerous large sulfuric acid aerosol particles were formed, which at least temporarily, caused substantial horizontal visibility degradation, and which have the potential to act as water vapor condensation nuclei in liquid water cloud formation, already at water vapor supersaturations as low as about 0.1%. Our AEROFOR model simulations also indicate that those fossil fuel combustion generated soot particles, which have survived cloud induced removal during the initial plume ascent, have experienced extensive H2SO4/H2O-coating, during upper troposphere plume travel. This coating may have dramatically altered the morphology and markedly increased the light absorption efficiency of soot particles.


2003 ◽  
Vol 3 (1) ◽  
pp. 251-257 ◽  
Author(s):  
K. E. J. Lehtinen ◽  
M. Kulmala

Abstract. The formation and growth of atmospheric aerosol particles is considered using an exact discrete method with molecular resolution in size space. The method is immune to numerical diffusion problems that are a nuisance for typical simulation methods using a sectional representation for the particle size distribution. For condensational growth, a slight modification is proposed for the Fuchs-Sutugin expression, which improves the prediction of the growth rate of nano-sized particles by as much as a factor of two. The presented method is applied to particle formation in a Finnish Boreal forest and is shown to capture the essential features of the dynamics quite nicely. Furthermore, it is shown that the growth of the particles is roughly linear, which means that the amount of condensable vapour is constant (of the order 1013 1/m3).


2013 ◽  
Vol 110 (43) ◽  
pp. 17223-17228 ◽  
Author(s):  
S. Schobesberger ◽  
H. Junninen ◽  
F. Bianchi ◽  
G. Lonn ◽  
M. Ehn ◽  
...  

2021 ◽  
Vol 21 (23) ◽  
pp. 17389-17431
Author(s):  
Ditte Taipale ◽  
Veli-Matti Kerminen ◽  
Mikael Ehn ◽  
Markku Kulmala ◽  
Ülo Niinemets

Abstract. Most trees emit volatile organic compounds (VOCs) continuously throughout their life, but the rate of emission and spectrum of emitted VOCs become substantially altered when the trees experience stress. Despite this, models to predict the emissions of VOCs do not account for perturbations caused by biotic plant stress. Considering that such stresses have generally been forecast to increase in both frequency and severity in the future climate, the neglect of stress-induced plant emissions in models might be one of the key obstacles for realistic climate change predictions, since changes in VOC concentrations are known to greatly influence atmospheric aerosol processes. Thus, we constructed a model to study the impact of biotic plant stresses on new particle formation and growth throughout a full growing season. We simulated the influence on aerosol processes caused by herbivory by the European gypsy moth (Lymantria dispar) and autumnal moth (Epirrita autumnata) feeding on pedunculate oak (Quercus robur) and mountain birch (Betula pubescens var. pumila), respectively, and also fungal infections of pedunculate oak and balsam poplar (Populus balsamifera var. suaveolens) by oak powdery mildew (Erysiphe alphitoides) and poplar rust (Melampsora larici-populina), respectively. Our modelling results indicate that all the investigated plant stresses are capable of substantially perturbing both the number and size of aerosol particles in atmospherically relevant conditions, with increases in the amount of newly formed particles by up to about an order of magnitude and additional daily growth of up to almost 50 nm. We also showed that it can be more important to account for biotic plant stresses in models for local and regional predictions of new particle formation and growth during the time of infestation or infection than significant variations in, e.g. leaf area index and temperature and light conditions, which are currently the main parameters controlling predictions of VOC emissions. Our study thus demonstrates that biotic plant stress can be highly atmospherically relevant. To validate our findings, field measurements are urgently needed to quantify the role of stress emissions in atmospheric aerosol processes and for making integration of biotic plant stress emission responses into numerical models for prediction of atmospheric chemistry and physics, including climate change projection models, possible.


2006 ◽  
Vol 6 (12) ◽  
pp. 4403-4413 ◽  
Author(s):  
T. M. VanReken ◽  
J. P. Greenberg ◽  
P. C. Harley ◽  
A. B. Guenther ◽  
J. N. Smith

Abstract. A new facility has been developed to investigate the formation of new particles from the oxidation of volatile organic compounds emitted from vegetation. The facility consists of a biogenic emissions enclosure, an aerosol growth chamber, and the associated instrumentation. Using the facility, new particle formation events have been induced through the reaction of ozone with three different precursor gas mixtures: an α-pinene test mixture and the emissions of a Holm oak (Quercus ilex) specimen and a loblolly pine (Pinus taeda) specimen. The results demonstrate the variability between species in their potential to form new aerosol products. The emissions of Q. ilex specimen resulted in fewer particles than did α-pinene, although the concentration of monoterpenes was roughly equal in both experiments before the addition of ozone. Conversely, the oxidation of P. taeda specimen emissions led to the formation of more particles than either of the other two gas mixtures, despite a lower initial terpenoid concentration. These variations can be attributed to differences in the speciation of the vegetative emissions with respect to the α-pinene mixture and to each other. Specifically, the presence of β-pinene and other slower-reacting monoterpenes probably inhibited particle formation in the Q. ilex experiment, while the presence of sesquiterpenes, including β-caryophyllene, in the emissions of the P. taeda specimen were the likely cause of the more intense particle formation events observed during that experiment.


2019 ◽  
Author(s):  
Julia Hammes ◽  
Epameinondas Tsiligiannis ◽  
Thomas F. Mentel ◽  
Mattias Hallquist

Abstract. Secondary organic aerosol (SOA) represents a significant fraction of the tropospheric aerosol and its precursors are volatile organic compounds (VOC). Anthropogenic VOCs (AVOC) dominate the VOC budget in many urban areas with 1,3,5-trimethylbenzene (TMB) being among the most reactive aromatic AVOCs. TMB formed highly oxygenated organic molecules (HOM) in NOx free environment, which could contribute to new particle formation (NPF) depending on oxidation conditions were elevated OH oxidation enhanced particle formation. The experiments were performed in an oxidation flow reactor, the Go : PAM unit, under controlled OH oxidation conditions. By addition of NOx to the system we investigated the effect of NOx on particle formation and on the product distribution. We show that the formation of HOM and especially HOM accretion products, strongly varies with NOx conditions. We observe a suppression of HOM and particle formation with increasing NOx / ΔTMB and an increase in the formation of organonitrates (ON) mostly at the expense of HOM accretion products. We propose reaction mechanisms/pathways that explain the formation and observed product distributions with respect to oxidation conditions. We hypothesize that, based on our findings from TMB oxidation studies, aromatic AVOCs may not contribute significantly to NPF under typical NOx / AVOC conditions found in urban atmospheres.


Sign in / Sign up

Export Citation Format

Share Document