scholarly journals Impact of climate change on tropospheric ozone and its global budgets

2008 ◽  
Vol 8 (2) ◽  
pp. 369-387 ◽  
Author(s):  
G. Zeng ◽  
J. A. Pyle ◽  
P. J. Young

Abstract. We present the chemistry-climate model UMCAM in which a relatively detailed tropospheric chemical module has been incorporated into the UK Met Office's Unified Model version 4.5. We obtain good agreements between the modelled ozone/nitrogen species and a range of observations including surface ozone measurements, ozone sonde data, and some aircraft campaigns. Four 2100 calculations assess model responses to projected changes of anthropogenic emissions (SRES A2), climate change (due to doubling CO2), and idealised climate change-associated changes in biogenic emissions (i.e. 50% increase of isoprene emission and doubling emissions of soil-NOx). The global tropospheric ozone burden increases significantly for all the 2100 A2 simulations, with the largest response caused by the increase of anthropogenic emissions. Climate change has diverse impacts on O3 and its budgets through changes in circulation and meteorological variables. Increased water vapour causes a substantial ozone reduction especially in the tropical lower troposphere (>10 ppbv reduction over the tropical ocean). On the other hand, an enhanced stratosphere-troposphere exchange of ozone, which increases by 80% due to doubling CO2, contributes to ozone increases in the extratropical free troposphere which subsequently propagate to the surface. Projected higher temperatures favour ozone chemical production and PAN decomposition which lead to high surface ozone levels in certain regions. Enhanced convection transports ozone precursors more rapidly out of the boundary layer resulting in an increase of ozone production in the free troposphere. Lightning-produced NOx increases by about 22% in the doubled CO2 climate and contributes to ozone production. The response to the increase of isoprene emissions shows that the change of ozone is largely determined by background NOx levels: high NOx environment increases ozone production; isoprene emitting regions with low NOx levels see local ozone decreases, and increase of ozone levels in the remote region due to the influence of PAN chemistry. The calculated ozone changes in response to a 50% increase of isoprene emissions are in the range of between −8 ppbv to 6 ppbv. Doubling soil-NOx emissions will increase tropospheric ozone considerably, with up to 5 ppbv in source regions.

2007 ◽  
Vol 7 (4) ◽  
pp. 11141-11189 ◽  
Author(s):  
G. Zeng ◽  
J. A. Pyle ◽  
P. J. Young

Abstract. We present the chemistry-climate model UM_CAM in which a relatively detailed tropospheric chemical module has been incorporated into the UK Met Office's Unified Model version 4.5. We obtain good agreements between the modelled ozone/nitrogen species and a range of observations including surface ozone measurements, ozone sonde data, and some aircraft campaigns. Four 2100 calculations assess model responses to projected changes of anthropogenic emissions (SRES A2), climate change (due to doubling CO2), and idealised climate change associated changes in biogenic emissions (i.e. 50% increase of isoprene emission and doubling emissions of soil-NOx). The global tropospheric ozone burden increases significantly for all the 2100 A2 simulations, with the largest response caused by the increase of anthropogenic emissions. Climate change has diverse impacts on O3 and its budgets through changes in circulation and meteorological variables. Increased water vapour causes a substantial ozone reduction especially in the tropical lower troposphere (>10 ppbv reduction over the tropical ocean). On the other hand, an enhanced stratosphere-troposphere exchange of ozone, which increases by 80% due to doubling CO2, contributes to ozone increases in the extratropical free troposphere which subsequently propagate to the surface. Projected higher temperatures favour ozone chemical production and PAN decomposition which lead to high surface ozone levels in certain regions. Enhanced convection transports ozone precursors more rapidly out of the boundary layer resulting in an increase of ozone production in the free troposphere. Lightning-produced NOx increases by about 22% in the doubled CO2 climate and contributes to ozone production. The response to the increase of isoprene emissions shows that the change of ozone is largely determined by background NOx levels: high NOx environment increases ozone production; isoprene emitting regions with low NOx levels see local ozone decreases, and increase of ozone levels in the remote region due to the influence of PAN chemistry. The calculated ozone changes in response to a 50% increase of isoprene emissions are in the range of between –8 ppbv to 6 ppbv. Doubling soil-NOx emissions will increase tropospheric ozone considerably, with up to 5 ppbv in source regions.


2018 ◽  
Vol 11 (7) ◽  
pp. 2825-2840 ◽  
Author(s):  
Tim Butler ◽  
Aurelia Lupascu ◽  
Jane Coates ◽  
Shuai Zhu

Abstract. A system for source attribution of tropospheric ozone produced from both NOx and volatile organic compound (VOC) precursors is described, along with its implementation in the Community Earth System Model (CESM) version 1.2.2 using CAM4. The user can specify an arbitrary number of tag identities for each NOx or VOC species in the model, and the tagging system rewrites the model chemical mechanism and source code to incorporate tagged tracers and reactions representing these tagged species, as well as ozone produced in the stratosphere. If the user supplies emission files for the corresponding tagged tracers, the model will produce tagged ozone tracers which represent the contribution of each of the tag identities to the modelled total tropospheric ozone. Our tagged tracers preserve Ox. The size of the tagged chemical mechanism scales linearly with the number of specified tag identities. Separate simulations are required for NOx and VOC tagging, which avoids the sharing of tag identities between NOx and VOC species. Results are presented and evaluated for both NOx and VOC source attribution. We show that northern hemispheric surface ozone is dominated year-round by anthropogenic emissions of NOx, but that the mix of corresponding VOC precursors changes over the course of the year; anthropogenic VOC emissions contribute significantly to surface ozone in winter–spring, while biogenic VOCs are more important in summer. The system described here can provide important diagnostic information about modelled ozone production, and could be used to construct source–receptor relationships for tropospheric ozone.


2014 ◽  
Vol 14 (2) ◽  
pp. 1011-1024 ◽  
Author(s):  
O. J. Squire ◽  
A. T. Archibald ◽  
N. L. Abraham ◽  
D. J. Beerling ◽  
C. N. Hewitt ◽  
...  

Abstract. Over the 21st century, changes in CO2 levels, climate and land use are expected to alter the global distribution of vegetation, leading to changes in trace gas emissions from plants, including, importantly, the emissions of isoprene. This, combined with changes in anthropogenic emissions, has the potential to impact tropospheric ozone levels, which above a certain level are harmful to animals and vegetation. In this study we use a biogenic emissions model following the empirical parameterisation of the MEGAN model, with vegetation distributions calculated by the Sheffield Dynamic Global Vegetation Model (SDGVM) to explore a range of potential future (2095) changes in isoprene emissions caused by changes in climate (including natural land use changes), land use, and the inhibition of isoprene emissions by CO2. From the present-day (2000) value of 467 Tg C yr−1, we find that the combined impact of these factors could cause a net decrease in isoprene emissions of 259 Tg C yr−1 (55%) with individual contributions of +78 Tg C yr−1 (climate change), −190 Tg C yr−1 (land use) and −147 Tg C yr−1 (CO2 inhibition). Using these isoprene emissions and changes in anthropogenic emissions, a series of integrations is conducted with the UM-UKCA chemistry-climate model with the aim of examining changes in ozone over the 21st century. Globally, all combined future changes cause a decrease in the tropospheric ozone burden of 27 Tg (7%) from 379 Tg in the present-day. At the surface, decreases in ozone of 6–10 ppb are calculated over the oceans and developed northern hemispheric regions, due to reduced NOx transport by PAN and reductions in NOx emissions in these areas respectively. Increases of 4–6 ppb are calculated in the continental tropics due to cropland expansion in these regions, increased CO2 inhibition of isoprene emissions, and higher temperatures due to climate change. These effects outweigh the decreases in tropical ozone caused by increased tropical isoprene emissions with climate change. Our land use change scenario consists of cropland expansion, which is most pronounced in the tropics. The tropics are also where land use change causes the greatest increases in ozone. As such there is potential for increased crop exposure to harmful levels of ozone. However, we find that these ozone increases are still not large enough to raise ozone to such damaging levels.


2021 ◽  
Vol 21 (22) ◽  
pp. 16911-16923
Author(s):  
Zhixiong Chen ◽  
Jane Liu ◽  
Xugeng Cheng ◽  
Mengmiao Yang ◽  
Hong Wang

Abstract. Based on an ensemble of 17 typhoons that made landfall between 2014 and 2018, we investigate the positive and negative influences of typhoons on tropospheric ozone over southern China. With respect to the proximity of typhoon centres and the typhoon developmental stages, we find that surface ozone is enhanced when typhoons are 400–1500 km away during the initial stages of development (e.g. from 1 d before to 1 d after typhoon genesis). The positive ozone anomalies reach 10–20 ppbv above the background ozone level on average. The maximum enhancement of surface ozone appears at a radial distance of 1100–1300 km from the typhoon centre during these initial stages. As the typhoons approach southern China, the influences of these systems switch to reducing ozone and, hence, lead to negative ozone anomalies of 6–9 ppbv. Exploring the linkages between ozone variations and typhoon-induced meteorological evolution, we find that increasing temperature and weak winds in the atmospheric boundary layer (ABL) and dominating downward motions promote ozone production and accumulation over the outskirts of typhoons during typhoon initial stages, whereas deteriorating weather, accompanied by dropping temperature, wind gales and convective activity, reduces the production and accumulation of surface ozone when typhoons are making landfall. We further examine the impacts of typhoons on tropospheric ozone profiles vertically, especially the influences of typhoon-induced stratospheric intrusions on lower troposphere and surface ozone. Based on temporally dense ozone profile observations, we find two high-ozone regions, located in the ABL and the middle to upper troposphere respectively, during different typhoon stages. On average, the high-ozone region in the ABL has a maximum ozone enhancement of 10–12 ppbv at 1–1.5 km altitude during the initial typhoon stages. In the high-ozone region in the middle to upper troposphere, ozone enhancement persists over a longer period with a maximum ozone enhancement of ∼ 10 ppbv at 7–8 km altitude shortly after typhoon genesis; this value increases to ∼ 30 ppbv near 12 km altitude when typhoons reach their maximum intensity. When typhoons make landfall, negative ozone anomalies appear and extend upward with a maximum ozone reduction of 14–18 ppbv at 5 km altitude and 20–25 ppbv at 11 km altitude. Although the overall tropospheric ozone is usually reduced during typhoon landfall, we find that five of eight typhoon samples induced ozone-rich air with a stratospheric origin above 4 km altitude; moreover, in three typhoon cases, the ozone-rich air intrusions can sink to the ABL. This suggests that the typhoon-induced stratospheric intrusions play an important role in surface ozone enhancement.


2018 ◽  
Author(s):  
Ryan S. Williams ◽  
Michaela I. Hegglin ◽  
Brian J. Kerridge ◽  
Patrick Jöckel ◽  
Barry G. Latter ◽  
...  

Abstract. The stratospheric contribution to tropospheric ozone (O3) has been a subject of much debate in recent decades, but is known to have an important influence. Recent improvements in diagnostic and modelling tools provide new evidence that the stratosphere has a much larger influence than previously thought. This study aims to characterise the seasonal and geographical distribution of tropospheric ozone, its variability and changes, and provide quantification of the stratospheric influence on these measures. To this end, we evaluate hindcast specified dynamics chemistry-climate model (CCM) simulations from the ECHAM/MESSy Atmospheric Chemistry (EMAC) model and the Canadian Middle Atmosphere Model (CMAM), as contributed to the IGAC/SPARC Chemistry Climate Model Initiative (CCMI) activity, together with satellite observations from the Ozone Monitoring Instrument (OMI) and ozonesonde profile measurements from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC) over a period of concurrent data availability (2005–2010). An overall positive, seasonally dependent bias in 1000–450 hPa (~ 0–5.5 km) subcolumn ozone is found for EMAC, ranging from 2–8 Dobson Units (DU), whereas CMAM is found to be in closer agreement with the observations, although with substantial seasonal and regional variation in the sign and magnitude of the bias (~ −4 to +4 DU). Although the application of OMI averaging kernels (AKs) improves agreement with model estimates from both EMAC and CMAM as expected, comparisons with ozonesondes indicate a positive ozone bias in the lower stratosphere in CMAM, together with an underestimation of photochemical ozone production (negative bias) in the troposphere. Model variability is found to be more similar in magnitude to that implied from ozonesondes, in comparison with OMI which has significantly larger variability. Noting the overall consistency of the CCMs, the influence of the model chemistry schemes and internal dynamics is discussed in relation to the inter-model differences found. In particular, it is shown that CMAM simulates a faster and shallower Brewer-Dobson Circulation (BDC) relative to both EMAC and observational estimates, which has implications for the distribution and magnitude of the downward flux of stratospheric ozone, over the most recent climatological period (1980–2010). Nonetheless, it is shown that the stratospheric influence on tropospheric ozone is larger than previously thought and is estimated to exceed 50 % in the wintertime extratropics, even in the lower troposphere. Finally, long term changes in the CCM ozone tracers are calculated for different seasons between 1980–89 and 2001–10. An overall statistically significant increase in tropospheric ozone is found across much of the world, but particularly in the Northern Hemisphere and in the middle to upper troposphere, where the increase is on the order of 4–6 ppbv (5–10 %). Our model study implies that attribution from stratosphere-troposphere exchange (STE) to such ozone changes ranges from 25–30 % at the surface to as much as 50–80 % in the upper troposphere-lower stratosphere (UTLS) across many regions of the world. These findings highlight the importance of a well-resolved stratosphere in simulations of tropospheric ozone and its implications for the radiative forcing, air quality and oxidation capacity of the troposphere.


2017 ◽  
Author(s):  
Yingying Yan ◽  
Andrea Pozzer ◽  
Narendra Ojha ◽  
Jintai Lin ◽  
Jos Lelieveld

Abstract. Surface-based measurements from the EMEP network are used to estimate the changes in surface ozone levels during the 1995–2014 period over Europe. It is shown that a significantly decreasing trend in the 95th percentile ozone concentrations has occurred, especially during noontime (0.9 µg/m3/y), while the 5th percentile ozone concentrations continued to increase with a trend of 0.3 µg/m3/y during the study period. With the help of numerical simulations performed with the global chemistry-climate model EMAC, the importance of anthropogenic emissions changes in determining these changes are investigated. The EMAC model is found to successfully capture the observed temporal variability in mean ozone concentrations, as well as the contrast in the trends of 95th and 5th percentile ozone over Europe. Sensitivity simulations and statistical analysis show that a decrease in European anthropogenic emissions had contrasting effects on surface ozone trends between the 95th and 5th percentile levels, and that background ozone levels have been influenced by hemispheric transport, while climate variability generally regulated the inter-annual variations of surface ozone in Europe.


2013 ◽  
Vol 13 (6) ◽  
pp. 3063-3085 ◽  
Author(s):  
D. S. Stevenson ◽  
P. J. Young ◽  
V. Naik ◽  
J.-F. Lamarque ◽  
D. T. Shindell ◽  
...  

Abstract. Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP) scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 410 mW m−2. The model range of pre-industrial to present-day changes in O3 produces a spread (±1 standard deviation) in RFs of ±17%. Three different radiation schemes were used – we find differences in RFs between schemes (for the same ozone fields) of ±10%. Applying two different tropopause definitions gives differences in RFs of ±3%. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of ±30% for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44±12%), nitrogen oxides (31 ± 9%), carbon monoxide (15 ± 3%) and non-methane volatile organic compounds (9 ± 2%); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m−2 DU−1, a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m−2; relative to 1750) for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 350, 420, 370 and 460 (in 2030), and 200, 300, 280 and 600 (in 2100). Models show some coherent responses of ozone to climate change: decreases in the tropical lower troposphere, associated with increases in water vapour; and increases in the sub-tropical to mid-latitude upper troposphere, associated with increases in lightning and stratosphere-to-troposphere transport. Climate change has relatively small impacts on global mean tropospheric ozone RF.


2018 ◽  
Vol 18 (8) ◽  
pp. 5589-5605 ◽  
Author(s):  
Yingying Yan ◽  
Andrea Pozzer ◽  
Narendra Ojha ◽  
Jintai Lin ◽  
Jos Lelieveld

Abstract. Surface-based measurements from the EMEP and Airbase networks are used to estimate the changes in surface ozone levels during the 1995–2014 period over Europe. We find significant ozone enhancements (0.20–0.59 µg m−3 yr−1 for the annual means; P-value  <  0.01 according to an F-test) over the European suburban and urban stations during 1995–2012 based on the Airbase sites. For European background ozone observed at EMEP sites, it is shown that a significantly decreasing trend in the 95th percentile ozone concentrations has occurred, especially at noon (0.9 µg m−3 yr−1; P-value  <  0.01), while the 5th percentile ozone concentrations continued to increase with a trend of 0.3 µg m−3 yr−1 (P-value  <  0.01) during the study period. With the help of numerical simulations performed with the global chemistry-climate model EMAC, the importance of anthropogenic emissions changes in determining these changes over background sites are investigated. The EMAC model is found to successfully capture the observed temporal variability in mean ozone concentrations, as well as the contrast in the trends of 95th and 5th percentile ozone over Europe. Sensitivity simulations and statistical analysis show that a decrease in European anthropogenic emissions had contrasting effects on surface ozone trends between the 95th and 5th percentile levels and that background ozone levels have been influenced by hemispheric transport, while climate variability generally regulated the inter-annual variations of surface ozone in Europe.


2016 ◽  
Author(s):  
Dimitris Akritidis ◽  
Andrea Pozzer ◽  
Prodromos Zanis ◽  
Evangelos Tyrlis ◽  
Bojan Škerlak ◽  
...  

Abstract. We study the contribution of tropopause folds in the summertime pool of tropospheric ozone over the eastern Mediterranean and the Middle East (EMME) with the aid of the atmospheric chemistry climate model ECHAM5/MESSy (EMAC). Tropopause fold events in EMAC simulations were identified with a 3-D labeling algorithm that detects folds at grid points where multiple crossings of the dynamical tropopause are computed. Subsequently the events featuring the largest horizontal and vertical extent were selected for further study. For the selection of these events we identified a significant contribution of the stratospheric ozone reservoir to the high concentrations of ozone in the middle/lower free troposphere over the EMME. A distinct increase of ozone is found over the EMME in the middle troposphere during summer as a result of the fold activity, shifting towards the south-east and decreasing altitude. We find that the interannual variability of near surface ozone over the eastern Mediterranean (EM) during summer is related to that of both tropopause folds and ozone in the free troposphere.


2013 ◽  
Vol 13 (7) ◽  
pp. 18307-18344
Author(s):  
O. J. Squire ◽  
A. T. Archibald ◽  
D. J. Beerling ◽  
C. N. Hewitt ◽  
J. Lathière ◽  
...  

Abstract. Over the 21st century, changes in CO2 levels, climate and land use are expected to alter the global distribution of vegetation, leading to changes in trace gas emissions from plants, including, importantly, the emissions of isoprene. This, combined with changes in anthropogenic emissions, has the potential to impact tropospheric ozone levels, which above a certain level are harmful to animals and vegetation. In this study we use a biogenic emissions model following the empirical parameterisation of the MEGAN model, with vegetation distributions calculated by the Sheffield Dynamic Global Vegetation Model (SDGVM) to calculate potential future (2095) changes in isoprene emissions caused by changes in climate, land use, and the inhibition of isoprene emissions by CO2. From the present day (2000) value of 467 Tg C yr-1, we find that the combined impact of these factors causes a net decrease in isoprene emissions of 259Tg C yr-1 (55%) with individual contributions of +78 Tg C yr-1 (climate change), −190 Tg C yr-1 (land use) and −147 Tg C yr-1 (CO2 inhibition). Using these isoprene emissions and changes in anthropogenic emissions, a series of integrations is conducted with the UM-UKCA chemistry-climate model with the aim of examining changes in ozone over the 21st century. Globally all combined future changes cause a decrease in the tropospheric ozone burden of 27 Tg (7%) from 379 Tg in the present day. At the surface, decreases in ozone of 6–10 ppb are calculated over the oceans and developed northern hemispheric regions due to reduced NOx transport by PAN and reductions in NOx emissions in these areas respectively. Increases of 4–6 ppb are calculated in the continental Tropics due to cropland expansion in these regions, increased CO2 inhibition of isoprene emissions, and higher temperatures due to climate change. These effects outweigh the decreases in tropical ozone caused by increased tropical isoprene emissions with climate change. Our land use change scenario consists of cropland expansion which is most pronounced in the Tropics. The Tropics are also where land use change causes the greatest increases in ozone. As such there is potential for increased crop exposure to harmful levels of ozone. However, we find that these ozone increases are still not large enough to raise ozone to such damaging levels.


Sign in / Sign up

Export Citation Format

Share Document