scholarly journals Positive and negative influences of typhoons on tropospheric ozone over southern China

2021 ◽  
Vol 21 (22) ◽  
pp. 16911-16923
Author(s):  
Zhixiong Chen ◽  
Jane Liu ◽  
Xugeng Cheng ◽  
Mengmiao Yang ◽  
Hong Wang

Abstract. Based on an ensemble of 17 typhoons that made landfall between 2014 and 2018, we investigate the positive and negative influences of typhoons on tropospheric ozone over southern China. With respect to the proximity of typhoon centres and the typhoon developmental stages, we find that surface ozone is enhanced when typhoons are 400–1500 km away during the initial stages of development (e.g. from 1 d before to 1 d after typhoon genesis). The positive ozone anomalies reach 10–20 ppbv above the background ozone level on average. The maximum enhancement of surface ozone appears at a radial distance of 1100–1300 km from the typhoon centre during these initial stages. As the typhoons approach southern China, the influences of these systems switch to reducing ozone and, hence, lead to negative ozone anomalies of 6–9 ppbv. Exploring the linkages between ozone variations and typhoon-induced meteorological evolution, we find that increasing temperature and weak winds in the atmospheric boundary layer (ABL) and dominating downward motions promote ozone production and accumulation over the outskirts of typhoons during typhoon initial stages, whereas deteriorating weather, accompanied by dropping temperature, wind gales and convective activity, reduces the production and accumulation of surface ozone when typhoons are making landfall. We further examine the impacts of typhoons on tropospheric ozone profiles vertically, especially the influences of typhoon-induced stratospheric intrusions on lower troposphere and surface ozone. Based on temporally dense ozone profile observations, we find two high-ozone regions, located in the ABL and the middle to upper troposphere respectively, during different typhoon stages. On average, the high-ozone region in the ABL has a maximum ozone enhancement of 10–12 ppbv at 1–1.5 km altitude during the initial typhoon stages. In the high-ozone region in the middle to upper troposphere, ozone enhancement persists over a longer period with a maximum ozone enhancement of ∼ 10 ppbv at 7–8 km altitude shortly after typhoon genesis; this value increases to ∼ 30 ppbv near 12 km altitude when typhoons reach their maximum intensity. When typhoons make landfall, negative ozone anomalies appear and extend upward with a maximum ozone reduction of 14–18 ppbv at 5 km altitude and 20–25 ppbv at 11 km altitude. Although the overall tropospheric ozone is usually reduced during typhoon landfall, we find that five of eight typhoon samples induced ozone-rich air with a stratospheric origin above 4 km altitude; moreover, in three typhoon cases, the ozone-rich air intrusions can sink to the ABL. This suggests that the typhoon-induced stratospheric intrusions play an important role in surface ozone enhancement.

2021 ◽  
Author(s):  
Zhixiong Chen ◽  
Jane Liu ◽  
Xugeng Cheng ◽  
Mengmiao Yang ◽  
Hong Wang

Abstract. In this study, we use an ensemble of 17 landfalling typhoons over 2014–2018 to investigate the positive and negative influences of typhoons on tropospheric ozone over southern China. Referring to the proximity to typhoons and typhoon developmental stages, we found that surface ozone is enhanced when typhoons are 400–1500 km away during the initial stages of typhoons (e.g., from 1 day before and to 1 day after typhoon genesis). The positive ozone anomaly averagely reaches 10–20 ppbv at the daytime and 9 ppbv at nighttime compared with the background ozone level. Particularly, surface ozone at radial distances of 1100–1300 km is most significantly enhanced during these initial stages. As the typhoons approach and land in southern China, the influences of typhoons change from enhancing to reducing ozone. Surface ozone concentrations decrease with a negative ozone anomaly ranging between -12 % ~ -17 % relative to the background ozone level. We explore the physical linkages between typhoons, meteorological conditions and ozone variations. Results show that during typhoon initial stages, the increasing temperature and weak winds in the atmospheric boundary layer (ABL) and dominating downward motions promote ozone production and accumulation over the outskirts of typhoons. While the deteriorating weather accompanied by dropping temperature, wind gales and convective activity reduces the production and accumulation of surface ozone when typhoons are making landfalling. Variations of tropospheric ozone profiles during the differential developmental stages of landfalling typhoons are further examined to quantify the influences of typhoon-induced stratospheric intrusions on lower troposphere and surface ozone. Using temporally dense ozone vertical observations, we found two regions of high ozone concentrations separately located in the ABL and the middle-to-upper troposphere under the influences of typhoons. Averagely, the ozone enhancement maximizes around 10–12 ppbv at 1–1.5 km altitude at the typhoon initial stages. The ozone enhancement persists over a longer period in the middle-to-upper troposphere with a positive ozone anomaly of 10 ppbv at 7–8 km altitude shortly after typhoon genesis, and 30 ppbv near 12 km altitude when typhoons reach their maximum intensity. When typhoons are landing, a negative ozone anomaly appears and extends upward with a maximum ozone reduction of 14–18 ppbv at 5 km altitude and 20–25 ppbv at 11 km altitude. Though the overall tropospheric ozone is usually reduced during typhoon landfalling, we quantify that five of eight typhoon samples deduce ozone-rich air with the stratospheric origin (80 ppbv) above 4 km altitude, and in 3 typhoon cases the ozone-rich air intrusions (60 ppbv) can sink to the ABL. This suggests that the typhoon-induced stratospheric ozone-rich air intrusions play an important role in surface ozone enhancement.


2018 ◽  
Author(s):  
Ryan S. Williams ◽  
Michaela I. Hegglin ◽  
Brian J. Kerridge ◽  
Patrick Jöckel ◽  
Barry G. Latter ◽  
...  

Abstract. The stratospheric contribution to tropospheric ozone (O3) has been a subject of much debate in recent decades, but is known to have an important influence. Recent improvements in diagnostic and modelling tools provide new evidence that the stratosphere has a much larger influence than previously thought. This study aims to characterise the seasonal and geographical distribution of tropospheric ozone, its variability and changes, and provide quantification of the stratospheric influence on these measures. To this end, we evaluate hindcast specified dynamics chemistry-climate model (CCM) simulations from the ECHAM/MESSy Atmospheric Chemistry (EMAC) model and the Canadian Middle Atmosphere Model (CMAM), as contributed to the IGAC/SPARC Chemistry Climate Model Initiative (CCMI) activity, together with satellite observations from the Ozone Monitoring Instrument (OMI) and ozonesonde profile measurements from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC) over a period of concurrent data availability (2005–2010). An overall positive, seasonally dependent bias in 1000–450 hPa (~ 0–5.5 km) subcolumn ozone is found for EMAC, ranging from 2–8 Dobson Units (DU), whereas CMAM is found to be in closer agreement with the observations, although with substantial seasonal and regional variation in the sign and magnitude of the bias (~ −4 to +4 DU). Although the application of OMI averaging kernels (AKs) improves agreement with model estimates from both EMAC and CMAM as expected, comparisons with ozonesondes indicate a positive ozone bias in the lower stratosphere in CMAM, together with an underestimation of photochemical ozone production (negative bias) in the troposphere. Model variability is found to be more similar in magnitude to that implied from ozonesondes, in comparison with OMI which has significantly larger variability. Noting the overall consistency of the CCMs, the influence of the model chemistry schemes and internal dynamics is discussed in relation to the inter-model differences found. In particular, it is shown that CMAM simulates a faster and shallower Brewer-Dobson Circulation (BDC) relative to both EMAC and observational estimates, which has implications for the distribution and magnitude of the downward flux of stratospheric ozone, over the most recent climatological period (1980–2010). Nonetheless, it is shown that the stratospheric influence on tropospheric ozone is larger than previously thought and is estimated to exceed 50 % in the wintertime extratropics, even in the lower troposphere. Finally, long term changes in the CCM ozone tracers are calculated for different seasons between 1980–89 and 2001–10. An overall statistically significant increase in tropospheric ozone is found across much of the world, but particularly in the Northern Hemisphere and in the middle to upper troposphere, where the increase is on the order of 4–6 ppbv (5–10 %). Our model study implies that attribution from stratosphere-troposphere exchange (STE) to such ozone changes ranges from 25–30 % at the surface to as much as 50–80 % in the upper troposphere-lower stratosphere (UTLS) across many regions of the world. These findings highlight the importance of a well-resolved stratosphere in simulations of tropospheric ozone and its implications for the radiative forcing, air quality and oxidation capacity of the troposphere.


2008 ◽  
Vol 8 (2) ◽  
pp. 369-387 ◽  
Author(s):  
G. Zeng ◽  
J. A. Pyle ◽  
P. J. Young

Abstract. We present the chemistry-climate model UMCAM in which a relatively detailed tropospheric chemical module has been incorporated into the UK Met Office's Unified Model version 4.5. We obtain good agreements between the modelled ozone/nitrogen species and a range of observations including surface ozone measurements, ozone sonde data, and some aircraft campaigns. Four 2100 calculations assess model responses to projected changes of anthropogenic emissions (SRES A2), climate change (due to doubling CO2), and idealised climate change-associated changes in biogenic emissions (i.e. 50% increase of isoprene emission and doubling emissions of soil-NOx). The global tropospheric ozone burden increases significantly for all the 2100 A2 simulations, with the largest response caused by the increase of anthropogenic emissions. Climate change has diverse impacts on O3 and its budgets through changes in circulation and meteorological variables. Increased water vapour causes a substantial ozone reduction especially in the tropical lower troposphere (>10 ppbv reduction over the tropical ocean). On the other hand, an enhanced stratosphere-troposphere exchange of ozone, which increases by 80% due to doubling CO2, contributes to ozone increases in the extratropical free troposphere which subsequently propagate to the surface. Projected higher temperatures favour ozone chemical production and PAN decomposition which lead to high surface ozone levels in certain regions. Enhanced convection transports ozone precursors more rapidly out of the boundary layer resulting in an increase of ozone production in the free troposphere. Lightning-produced NOx increases by about 22% in the doubled CO2 climate and contributes to ozone production. The response to the increase of isoprene emissions shows that the change of ozone is largely determined by background NOx levels: high NOx environment increases ozone production; isoprene emitting regions with low NOx levels see local ozone decreases, and increase of ozone levels in the remote region due to the influence of PAN chemistry. The calculated ozone changes in response to a 50% increase of isoprene emissions are in the range of between −8 ppbv to 6 ppbv. Doubling soil-NOx emissions will increase tropospheric ozone considerably, with up to 5 ppbv in source regions.


2007 ◽  
Vol 7 (4) ◽  
pp. 11141-11189 ◽  
Author(s):  
G. Zeng ◽  
J. A. Pyle ◽  
P. J. Young

Abstract. We present the chemistry-climate model UM_CAM in which a relatively detailed tropospheric chemical module has been incorporated into the UK Met Office's Unified Model version 4.5. We obtain good agreements between the modelled ozone/nitrogen species and a range of observations including surface ozone measurements, ozone sonde data, and some aircraft campaigns. Four 2100 calculations assess model responses to projected changes of anthropogenic emissions (SRES A2), climate change (due to doubling CO2), and idealised climate change associated changes in biogenic emissions (i.e. 50% increase of isoprene emission and doubling emissions of soil-NOx). The global tropospheric ozone burden increases significantly for all the 2100 A2 simulations, with the largest response caused by the increase of anthropogenic emissions. Climate change has diverse impacts on O3 and its budgets through changes in circulation and meteorological variables. Increased water vapour causes a substantial ozone reduction especially in the tropical lower troposphere (>10 ppbv reduction over the tropical ocean). On the other hand, an enhanced stratosphere-troposphere exchange of ozone, which increases by 80% due to doubling CO2, contributes to ozone increases in the extratropical free troposphere which subsequently propagate to the surface. Projected higher temperatures favour ozone chemical production and PAN decomposition which lead to high surface ozone levels in certain regions. Enhanced convection transports ozone precursors more rapidly out of the boundary layer resulting in an increase of ozone production in the free troposphere. Lightning-produced NOx increases by about 22% in the doubled CO2 climate and contributes to ozone production. The response to the increase of isoprene emissions shows that the change of ozone is largely determined by background NOx levels: high NOx environment increases ozone production; isoprene emitting regions with low NOx levels see local ozone decreases, and increase of ozone levels in the remote region due to the influence of PAN chemistry. The calculated ozone changes in response to a 50% increase of isoprene emissions are in the range of between –8 ppbv to 6 ppbv. Doubling soil-NOx emissions will increase tropospheric ozone considerably, with up to 5 ppbv in source regions.


2016 ◽  
Author(s):  
Gerard Ancellet ◽  
Nikos Daskalakis ◽  
Jean Christophe Raut ◽  
Boris Quennehen ◽  
François Ravetta ◽  
...  

Abstract. The goal of the paper are to: (1) present tropospheric ozone (O3) climatologies in summer 2008 based on a large amount of measurements, during the International Polar Year when the Polar Study using Aircraft, Remote Sensing, Surface Measurements, and Models of Climate Chemistry, Aerosols, and Transport (POLARCAT) campaigns were conducted (2) investigate the processes that determine O3 concentrations in two different regions (Canada and Greenland) that were thoroughly studied using measurements from 3 aircraft and 7 ozonesonde stations. This paper provides an integrated analysis of these observations and the discussion of the latitudinal and vertical variability of tropospheric ozone north of 55° N during this period is performed using a regional model (WFR-Chem). Ozone, CO and potential vorticity (PV) distributions are extracted from the simulation at the measurement locations. The model is able to reproduce the O3 latitudinal and vertical variability but a negative O3 bias of 6–15 ppbv is found in the free troposphere over 4 km, especially over Canada. Ozone average concentrations are of the order of 65 ppbv at altitudes above 4 km both over Canada and Greenland, while they are less than 50 ppbv in the lower troposphere. The relative influence of stratosphere-troposphere exchange (STE) and of ozone production related to the local biomass burning (BB) emissions is discussed using differences between average values of O3, CO and PV for Southern and Northern Canada or Greenland and two vertical ranges in the troposphere: 0–4 km and 4–8 km. For Canada, the model CO distribution and the weak correlation (< 30 %) of O3 and PV suggests that stratosphere-troposphere exchange (STE) is not the major contribution to average tropospheric ozone at latitudes less than 70° N, due to the fact that local biomass burning (BB) emissions were significant during the 2008 summer period. Conversely over Greenland, significant STE is found according to the better O3 versus PV correlation (> 40 %) and the higher 75th PV percentile. A weak negative latitudinal summer ozone gradient −6 to −8 ppbv is found over Canada in the mid troposphere between 4 and 8 km. This is attributed to an efficient O3 photochemical production due to the BB emissions at latitudes less than 65° N, while STE contribution is more homogeneous in the latitude range 55° N to 70° N. A positive ozone latitudinal gradient of 12 ppbv is observed in the same altitude range over Greenland not because of an increasing latitudinal influence of STE, but because of different long range transport from multiple mid-latitude sources (North America, Europe and even Asia for latitudes higher than 77° N).


2019 ◽  
Vol 19 (6) ◽  
pp. 3589-3620 ◽  
Author(s):  
Ryan S. Williams ◽  
Michaela I. Hegglin ◽  
Brian J. Kerridge ◽  
Patrick Jöckel ◽  
Barry G. Latter ◽  
...  

Abstract. The stratospheric contribution to tropospheric ozone (O3) has been a subject of much debate in recent decades but is known to have an important influence. Recent improvements in diagnostic and modelling tools provide new evidence that the stratosphere has a much larger influence than previously thought. This study aims to characterise the seasonal and geographical distribution of tropospheric ozone, its variability, and its changes and provide quantification of the stratospheric influence on these measures. To this end, we evaluate hindcast specified-dynamics chemistry–climate model (CCM) simulations from the European Centre for Medium-Range Weather Forecasts – Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model and the Canadian Middle Atmosphere Model (CMAM), as contributed to the International Global Atmospheric Chemistry – Stratosphere-troposphere Processes And their Role in Climate (IGAC-SPARC) (IGAC–SPARC) Chemistry Climate Model Initiative (CCMI) activity, together with satellite observations from the Ozone Monitoring Instrument (OMI) and ozone-sonde profile measurements from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC) over a period of concurrent data availability (2005–2010). An overall positive, seasonally dependent bias in 1000–450 hPa (∼0–5.5 km) sub-column ozone is found for EMAC, ranging from 2 to 8 Dobson units (DU), whereas CMAM is found to be in closer agreement with the observations, although with substantial seasonal and regional variation in the sign and magnitude of the bias (∼±4 DU). Although the application of OMI averaging kernels (AKs) improves agreement with model estimates from both EMAC and CMAM as expected, comparisons with ozone-sondes indicate a positive ozone bias in the lower stratosphere in CMAM, together with a negative bias in the troposphere resulting from a likely underestimation of photochemical ozone production. This has ramifications for diagnosing the level of model–measurement agreement. Model variability is found to be more similar in magnitude to that implied from ozone-sondes in comparison with OMI, which has significantly larger variability. Noting the overall consistency of the CCMs, the influence of the model chemistry schemes and internal dynamics is discussed in relation to the inter-model differences found. In particular, it is inferred that CMAM simulates a faster and shallower Brewer–Dobson circulation (BDC) compared to both EMAC and observational estimates, which has implications for the distribution and magnitude of the downward flux of stratospheric ozone over the most recent climatological period (1980–2010). Nonetheless, it is shown that the stratospheric influence on tropospheric ozone is significant and is estimated to exceed 50 % in the wintertime extratropics, even in the lower troposphere. Finally, long-term changes in the CCM ozone tracers are calculated for different seasons. An overall statistically significant increase in tropospheric ozone is found across much of the world but particularly in the Northern Hemisphere and in the middle to upper troposphere, where the increase is on the order of 4–6 ppbv (5 %–10 %) between 1980–1989 and 2001–2010. Our model study implies that attribution from stratosphere–troposphere exchange (STE) to such ozone changes ranges from 25 % to 30 % at the surface to as much as 50 %–80 % in the upper troposphere–lower stratosphere (UTLS) across some regions of the world, including western Eurasia, eastern North America, the South Pacific and the southern Indian Ocean. These findings highlight the importance of a well-resolved stratosphere in simulations of tropospheric ozone and its implications for the radiative forcing, air quality and oxidation capacity of the troposphere.


2018 ◽  
Vol 11 (7) ◽  
pp. 2825-2840 ◽  
Author(s):  
Tim Butler ◽  
Aurelia Lupascu ◽  
Jane Coates ◽  
Shuai Zhu

Abstract. A system for source attribution of tropospheric ozone produced from both NOx and volatile organic compound (VOC) precursors is described, along with its implementation in the Community Earth System Model (CESM) version 1.2.2 using CAM4. The user can specify an arbitrary number of tag identities for each NOx or VOC species in the model, and the tagging system rewrites the model chemical mechanism and source code to incorporate tagged tracers and reactions representing these tagged species, as well as ozone produced in the stratosphere. If the user supplies emission files for the corresponding tagged tracers, the model will produce tagged ozone tracers which represent the contribution of each of the tag identities to the modelled total tropospheric ozone. Our tagged tracers preserve Ox. The size of the tagged chemical mechanism scales linearly with the number of specified tag identities. Separate simulations are required for NOx and VOC tagging, which avoids the sharing of tag identities between NOx and VOC species. Results are presented and evaluated for both NOx and VOC source attribution. We show that northern hemispheric surface ozone is dominated year-round by anthropogenic emissions of NOx, but that the mix of corresponding VOC precursors changes over the course of the year; anthropogenic VOC emissions contribute significantly to surface ozone in winter–spring, while biogenic VOCs are more important in summer. The system described here can provide important diagnostic information about modelled ozone production, and could be used to construct source–receptor relationships for tropospheric ozone.


2018 ◽  
Vol 18 (15) ◽  
pp. 11447-11469 ◽  
Author(s):  
Ruijing Ni ◽  
Jintai Lin ◽  
Yingying Yan ◽  
Weili Lin

Abstract. China is facing a severe ozone problem, but the origin of its ozone remains unclear. Here we use a GEOS-Chem based global–regional two-way coupled model system to quantify the individual contributions of eight emission source regions worldwide to springtime ozone in 2008 over China. The model reproduces the observed ozone from 31 ground sites and various aircraft and ozonesonde measurements in China and nearby countries, with a mean bias of 10 %–15 % both near the surface and in the troposphere. We then combine zero-out simulations, tagged ozone simulations, and a linear weighting approach to account for the effect of nonlinear chemistry on ozone source attribution. We find considerable contributions of total foreign anthropogenic emissions to surface ozone over China (2–11 ppb). For ozone of anthropogenic origin averaged over China, foreign regions together contribute 40 %–60 % below the height of 2 km and 85 % in the upper troposphere. For total ozone contributed by foreign anthropogenic emissions over China at various heights, the portion of transboundary ozone produced within foreign emission source regions is less than 50 %, with the rest produced by precursors transported out of those source regions. Japan and Korea contribute 0.6–2.1 ppb of surface ozone over the east coastal regions. Southeast Asia contributes 1–5 ppb over much of southern China and South Asia contributes up to 5–10 ppb of surface ozone over the border of southwestern China; and their contributions increase with height due to strong upwelling over the source regions. The European contribution reaches 2.1–3.0 ppb for surface ozone over the northern border of China and 1.5 ppb in the lower troposphere averaged over China. North America contributes 0.9–2.7 ppb of surface ozone over most of China (1.5–2.1 ppb over the North China Plain), with a China average at 1.5–2.5 ppb at different heights below 8 km, due to its large anthropogenic emissions and the transport-favorable midlatitude westerly wind. In addition to domestic emission control, global emission reduction is critical for China's ozone mitigation.


2012 ◽  
Vol 12 (10) ◽  
pp. 27589-27636 ◽  
Author(s):  
D. Fu ◽  
J. R. Worden ◽  
X. Liu ◽  
S. S. Kulawik ◽  
K. W. Bowman ◽  
...  

Abstract. We present satellite based ozone profile estimates derived by combining radiances measured at thermal infrared (TIR) wavelengths from the Aura Tropospheric Emission Spectrometer (TES) and ultraviolet (UV) wavelengths measured by the Aura Ozone Monitoring Instrument (OMI). The advantage of using these combined wavelengths and instruments for sounding ozone over either instrument alone is improved sensitivity near the surface as well as the capability to consistently resolve the lower troposphere, upper troposphere, and lower stratosphere for scenes with varying geophysical states. For example, the vertical resolution for ozone estimates from either TES or OMI vary strongly by surface albedo and temperature and typically provide 1.6 degrees-of-freedom for signal (DOFS) for TES or less than 1 DOFS for OMI in the troposphere. The combination typically provides 2 degrees-of-freedom for signal (DOFS) in the troposphere with approximately 0.4 DOFS for near surface ozone (surface to 700 hPa). We evaluate these new ozone profile estimates with ozonesonde measurements and find that calculated errors for the joint TES and OMI ozone profile estimates are in approximate agreement with actual errors as derived by the root-mean-square difference between the ozonesondes and the joint TES/OMI ozone estimates. We find that the vertical resolution of the joint TES/OMI ozone profile estimate is sufficient for quantifying variations in near-surface ozone with a precision of 26% (15.6 ppb) and a bias of 9.6% (5.7 ppb).


2020 ◽  
Author(s):  
Yury Shtabkin ◽  
Konstantin Moiseenko ◽  
Andrey Skorokhod ◽  
Elena Berezina

&lt;p&gt;Effect of photochemically active species emissions on near-surface air composition in industrial regions is non-local and in many cases can be traced in transcontinental scale. Largescaled plumes of polluted air defined by observations of tracer species on background stations and calculations with chemical-transport models are examples of this effect. In this work we use GEOS-Chem chemical transport model to make an assessment of influence have anthropogenic and biogenic emissions in Europe, European territory of Russia (ETR) and Siberia on total ozone generation taking into account common non-linear properties of O&lt;sub&gt;3&lt;/sub&gt;&amp;#8211;NO&lt;sub&gt;x&lt;/sub&gt;&amp;#8211;&amp;#1057;&amp;#1054;&amp;#8211;VOC system. It is shown that increasing of ozone production rate due to regional anthropogenic emissions of NO&lt;sub&gt;x&lt;/sub&gt; leads to substantial (up to 20 ppbv) increase of near-surface ozone concentrations in mid-latitudes traced up to 120E. The predominant role of long-range air transport against regional sources of photochemical ozone production was determined for the most part of European Russia and Siberia.&lt;br&gt;We also make a numerical assessment of ozone balance in Europe, ETR and Siberia. Annual ozone total mass in lower troposphere (from surface to 800 hPa) for Europe, ETR and Siberia depending on region is 1.5&amp;#8211;2.4 Tg in warm period (1 April &amp;#8211; 30 September) and 1.3&amp;#8211;2.2 Tg in cold period (1 October - 31 March). Ozone production in chemical processes with a high degree of accuracy (about 99%) is balanced by total atmospheric transport, while absolute variations in O&lt;sub&gt;3 &lt;/sub&gt;total mass do not exceed 0.5 Tg/year in Europe and 0.4 Tg/year in Siberia.&lt;br&gt;This work was supported by the Russian Foundation for Basic Research under grant 18-35-20031.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document