scholarly journals Modelling of cirrus clouds – Part 2: Competition of different nucleation mechanisms

2009 ◽  
Vol 9 (7) ◽  
pp. 2319-2334 ◽  
Author(s):  
P. Spichtinger ◽  
K. M. Gierens

Abstract. We study the competition of two different freezing mechanisms (homogeneous and heterogeneous freezing) in the same environment for cold cirrus clouds. To this goal we use the recently developed and validated ice microphysics scheme (Spichtinger and Gierens, 2009a) which distinguishes between ice classes according to their formation process. We investigate cases with purely homogeneous ice formation and compare them with cases where background ice nuclei in varying concentration heterogeneously form ice prior to homogeneous nucleation. We perform additionally a couple of sensitivity studies regarding threshold humidity for heterogeneous freezing, uplift speed, and ambient temperature, and we study the influence of random motions induced by temperature fluctuations in the clouds. We find three types of cloud evolution, homogeneously dominated, heterogeneously dominated, and a mixed type where neither nucleation process dominates. The latter case is prone to long–lasting in–cloud ice supersaturation of the order 30% and more.

2008 ◽  
Vol 8 (3) ◽  
pp. 9061-9098 ◽  
Author(s):  
P. Spichtinger ◽  
K. M. Gierens

Abstract. We study the competition of two different freezing mechanisms (homogeneous and heterogeneous freezing) in the same environment for cold cirrus clouds. To this goal we use the recently developed and validated ice microphysics scheme (Spichtinger and Gierens, 2008, henceforth "Part 1") which distinguishes between ice classes according to their formation process. We investigate cases with purely homogeneous ice formation and compare them with cases where background ice nuclei in varying concentration heterogeneously form ice prior to homogeneous nucleation. We perform additionally a couple of sensitivity studies regarding threshold humidity for heterogeneous freezing, uplift speed, and ambient temperature, and we study the influence of random motions induced by temperature fluctuations in the clouds. We find three types of cloud evolution, homogeneously dominated, heterogeneously dominated, and a mixed type where neither nucleation process dominates. The latter case is prone to long–lasting in–cloud ice supersaturation of the order 30% and more.


2009 ◽  
Vol 9 (2) ◽  
pp. 707-719 ◽  
Author(s):  
P. Spichtinger ◽  
K. M. Gierens

Abstract. A recently developed and validated bulk microphysics scheme for modelling cirrus clouds (Spichtinger and Gierens, 2009), implemented into the anelastic non-hydrostatic model EULAG is used for investigation of the impact of dynamics on the evolution of an arctic cirrostratus. Sensitivity studies are performed, using variation of large-scale updraughts as well as addition of small-scale temperature fluctuations and wind shear. The results show the importance of sedimentation of ice crystals on cloud evolution. Due to non-linear processes like homogeneous nucleation situations can arise where small changes in the outer parameters have large effects on the resulting cloud structure. In-cloud ice supersaturation is a common feature of all our simulations, and we show that dynamics is as least as important for its appearance than is microphysics.


2017 ◽  
Author(s):  
Lin Su ◽  
Jimmy C.H. Fung

Abstract. The GOCART–Thompson microphysics scheme, which couples the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model and aerosol-aware Thompson microphysics scheme, has been implemented in the Weather Research and Forecast model coupled with Chemistry (WRF-Chem), to quantify and evaluate the effect of dust on the ice nucleation process in the atmosphere by serving as ice nuclei. The performance of the GOCART-Thompson microphysics scheme in simulating the effect of dust in atmospheric ice nucleation is then evaluated over East Asia during spring in 2012, a typical dust-intensive season. Based upon the dust emission reasonably reproduced by WRF-Chem, the effect of dust on atmospheric cloud ice water content is well reproduced. With abundant dust particles serving as ice nuclei, the simulated ice water mixing ratio and ice crystal number concentration increases by one order of magnitude over the dust source region and downwind areas during the investigated period. The comparison with ice water path from satellite observations demonstrated that the simulation of cloud ice profile is substantially improved by applying the GOCART–Thompson microphysics scheme in the simulations. Additional sensitivity experiments are carried out to optimize the parameters in the ice nucleation parameterization in the GOCART–Thompson microphysics scheme, and the results suggest that the calibration factor in the ice nucleation scheme should be set to 3 or 4. Lowering the threshold relative humidity with respect to ice to 100 % for the ice nucleation parameterization leads to further improvement in cloud ice simulation.


2008 ◽  
Vol 8 (1) ◽  
pp. 601-686 ◽  
Author(s):  
P. Spichtinger ◽  
K. M. Gierens

Abstract. A double–moment bulk microphysics scheme for modelling cirrus clouds including explicit impact of aerosols on different types of nucleation mechanism is described. Process rates are formulated in terms of generalised moments of the underlying a priori size distributions in order to allow simple switching between various distribution types. The scheme has been implemented into a simple box model and into the anelastic non-hydrostatic model EULAG. The new microphysics is validated against simulations with detailed microphysics for idealised process studies and for a well documented case of arctic cirrostratus. Additionally, the formation of ice crystals with realistic background aerosol concentration is modelled and the effect of ambient pressure on homogeneous nucleation is investigated in the box model. The arctic cirrostratus case study is also supplemented with sensitivity studies including different vertical velocities, temperature fluctuations and wind shear. The model stands all tests and is thus suitable for cloud–resolving simulations of cirrus clouds. Last but not least, some new results are shown, corroborating the importance of sedimentation and dynamics inside cirrus clouds for forming the structure of the cirrus.


2011 ◽  
Vol 68 (10) ◽  
pp. 2306-2320 ◽  
Author(s):  
Stephen E. Lang ◽  
Wei-Kuo Tao ◽  
Xiping Zeng ◽  
Yaping Li

Abstract A well-known bias common to many bulk microphysics schemes currently being used in cloud-resolving models is the tendency to produce excessively large reflectivity values (e.g., 40 dBZ) in the middle and upper troposphere in simulated convective systems. The Rutledge and Hobbs–based bulk microphysics scheme in the Goddard Cumulus Ensemble model is modified to reduce this bias and improve realistic aspects. Modifications include lowering the efficiencies for snow/graupel riming and snow accreting cloud ice; converting less rimed snow to graupel; allowing snow/graupel sublimation; adding rime splintering, immersion freezing, and contact nucleation; replacing the Fletcher formulation for activated ice nuclei with that of Meyers et al.; allowing for ice supersaturation in the saturation adjustment; accounting for ambient RH in the growth of cloud ice to snow; and adding/accounting for cloud ice fall speeds. In addition, size-mapping schemes for snow/graupel were added as functions of temperature and mixing ratio, lowering particle sizes at colder temperatures but allowing larger particles near the melting level and at higher mixing ratios. The modifications were applied to a weakly organized continental case and an oceanic mesoscale convective system (MCS). Strong echoes in the middle and upper troposphere were reduced in both cases. Peak reflectivities agreed well with radar for the weaker land case but, despite improvement, remained too high for the MCS. Reflectivity distributions versus height were much improved versus radar for the less organized land case but not for the MCS despite fewer excessively strong echoes aloft due to a bias toward weaker echoes at storm top.


2017 ◽  
Vol 74 (12) ◽  
pp. 3901-3913 ◽  
Author(s):  
Shizuo Fu ◽  
Huiwen Xue

Abstract The effects of ice nuclei (IN) efficiency on the persistent ice formation in Arctic mixed-phase clouds (AMCs) are investigated using a large-eddy simulation model, coupled to a bin microphysics scheme with a prognostic IN formulation. In the three cases where the IN efficiency is high, ice formation and IN depletion are fast. When the IN concentration is 1 and 10 g−1, IN are completely depleted and the cloud becomes purely liquid phase before the end of the 24-h simulation. When the IN concentration is 100 g−1, the IN supply is sufficient but the liquid water is completely consumed so that the cloud dissipates quickly. In the three cases when the IN efficiency is low, ice formation is negligible in the first several hours but becomes significant as the temperature is decreased through longwave cooling. Before the end of the simulation, the cloud is in mixed phase when the IN concentration is 1 and 10 g−1 but dissipates when the IN concentration is 100 g−1. In the case where two types of IN are considered, ice formation persists throughout the simulation. Analysis shows that as the more efficient IN are continuously removed through ice formation, the less efficient IN gradually nucleate more ice crystals because the longwave cooling decreases the cloud temperature. This mechanism is further illustrated with a simple model. These results indicate that a spectrum of IN efficiency is necessary to maintain the persistent ice formation in AMCs.


2005 ◽  
Vol 5 (8) ◽  
pp. 2289-2297 ◽  
Author(s):  
C. H. Twohy ◽  
M. R. Poellot

Abstract. A counterflow virtual impactor was used to collect residual particles larger than about 0.1 μm diameter from anvil cirrus clouds generated over Florida in the southern United States. A wide variety of particle types were found. About one-third of the nuclei were salts, with varying amounts of crustal material, industrial metals, carbonaceous particles, and sulfates. Ambient aerosol particles near the anvils were found to have similar compositions, indicating that anvils act to redistribute particles over large regions of the atmosphere. Sampling occurred at a range of altitudes spanning temperatures from −21 to −56°C. More insoluble (crustal and metallic) particles typical of heterogeneous ice nuclei were found in ice crystals at warmer temperatures, while more soluble salts and sulfates were present at cold temperatures. At temperatures below about −35 to −40°C, soluble nuclei outnumbered insoluble nuclei, evidently reflecting the transition from primarily heterogeneous to primarily homogeneous freezing as a source of anvil ice.


2010 ◽  
Vol 67 (8) ◽  
pp. 2437-2450 ◽  
Author(s):  
Cynthia H. Twohy ◽  
Paul J. DeMott ◽  
Kerri A. Pratt ◽  
R. Subramanian ◽  
Gregory L. Kok ◽  
...  

Abstract Ice concentrations in orographic wave clouds at temperatures between −24° and −29°C were shown to be related to aerosol characteristics in nearby clear air during five research flights over the Rocky Mountains. When clouds with influence from colder temperatures were excluded from the dataset, mean ice nuclei and cloud ice number concentrations were very low, on the order of 1–5 L−1. In this environment, ice number concentrations were found to be significantly correlated with the number concentration of larger particles, those larger than both 0.1- and 0.5-μm diameter. A variety of complementary techniques was used to measure aerosol size distributions and chemical composition. Strong correlations were also observed between ice concentrations and the number concentrations of soot and biomass-burning aerosols. Ice nuclei concentrations directly measured in biomass-burning plumes were the highest detected during the project. Taken together, this evidence indicates a potential role for biomass-burning aerosols in ice formation, particularly in regions with relatively low concentrations of other ice nucleating aerosols.


2005 ◽  
Vol 5 (3) ◽  
pp. 3723-3745 ◽  
Author(s):  
C. H. Twohy ◽  
M. R. Poellot

Abstract. A counterflow virtual impactor was used to collect and analyze residual particles from anvil cirrus clouds generated over the state of Florida in the southern United States. A wide variety of particle types were found, including salts, crustal material, industrial metals, carbonaceous particles, and sulfates. Ambient aerosol particles near the anvils were found to have similar compositions, indicating that anvils act to redistribute particles over large regions of the atmosphere. Sampling occurred at a range of altitudes spanning temperatures from –21 to –56°C. More insoluble (crustal and metallic) particles typical of heterogeneous ice nuclei were found in ice crystals at warmer temperatures, while more soluble salts and sulfates were present at cold temperatures. At temperatures below about –35 to –40°C, soluble nuclei outnumbered insoluble nuclei, reflecting the transition from primarily heterogeneous to primarily homogeneous freezing as a source of anvil ice.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Slobodan Nickovic ◽  
Bojan Cvetkovic ◽  
Slavko Petković ◽  
Vassilis Amiridis ◽  
Goran Pejanović ◽  
...  

AbstractIce particles in high-altitude cold clouds can obstruct aircraft functioning. Over the last 20 years, there have been more than 150 recorded cases with engine power-loss and damage caused by tiny cloud ice crystals, which are difficult to detect with aircraft radars. Herein, we examine two aircraft accidents for which icing linked to convective weather conditions has been officially reported as the most likely reason for catastrophic consequences. We analyze whether desert mineral dust, known to be very efficient ice nuclei and present along both aircraft routes, could further augment the icing process. Using numerical simulations performed by a coupled atmosphere-dust model with an included parameterization for ice nucleation triggered by dust aerosols, we show that the predicted ice particle number sharply increases at approximate locations and times of accidents where desert dust was brought by convective circulation to the upper troposphere. We propose a new icing parameter which, unlike existing icing indices, for the first time includes in its calculation the predicted dust concentration. This study opens up the opportunity to use integrated atmospheric-dust forecasts as warnings for ice formation enhanced by mineral dust presence.


Sign in / Sign up

Export Citation Format

Share Document