scholarly journals Retrieval of aerosol single scattering albedo at ultraviolet wavelengths at the T1 site during MILAGRO

2009 ◽  
Vol 9 (15) ◽  
pp. 5813-5827 ◽  
Author(s):  
C. A. Corr ◽  
N. Krotkov ◽  
S. Madronich ◽  
J. R. Slusser ◽  
B. Holben ◽  
...  

Abstract. Surface measurements of direct and diffuse voltages at UV wavelengths were made at the T1 site during the MILAGRO (Megacity Initiative: Local and Global Research Observations) field campaign in March 2006, using a multifilter rotating shadowband radiometer (UV-MFRSR). We used the MFRSR data, together with measurements from a co-located CIMEL Sun photometer at the site operating as part of the AERONET network, to deduce aerosol single scattering albedo (ω) at 368 and 332 nm for four cloud-free days during the study. Our retrievals suggest that T1 aerosols with aerosol extinction optical depth τ368>0.1 that are influenced by Mexico City emissions, blowing dust, and biomass burning, are characterized by low ω368=0.73–0.85 and ω332=0.70–0.86, with small or no spectral variation of ω between 368 and 332 nm. Our findings are consistent with other published estimates of ω for Mexico City aerosols, including those that suggest that the absorption attributable to these aerosols is enhanced at UV wavelengths relative to visible wavelengths. We also demonstrate, via sensitivity tests, the importance of accurate τ and surface albedo measurements in ω retrievals at UV wavelengths.

2009 ◽  
Vol 9 (1) ◽  
pp. 4971-5008 ◽  
Author(s):  
C. A. Corr ◽  
N. Krotkov ◽  
S. Madronich ◽  
J. R. Slusser ◽  
B. Holben ◽  
...  

Abstract. Surface measurements of direct and diffuse voltages at UV wavelengths were made at the T1 site during the MILAGRO (Megacity Initiative: Local and Global Research Observations) field campaign in March 2006, using a multifilter rotating shadowband radiometer (UV-MFRSR). We used the MFRSR data, together with measurements from a co-located CIMEL Sun photometer at the site operating as part of the AERONET network, to deduce aerosol single scattering albedo (ω) at 368 and 332 nm for four cloud-free days during the study. Our retrievals suggest that T1 aerosols with aerosol extinction optical depth τ368>0.1 that are influenced by Mexico City emissions, blowing dust, and biomass burning, are characterized by low ω368=0.73–0.85 and ω332=0.70–0.86, with small or no spectral variation of ω between 368 and 332 nm. Our findings are consistent with other published estimates of ω for Mexico City aerosols, including those that suggest that the absorption attributable to these aerosols is enhanced at UV wavelengths relative to visible wavelengths. We also demonstrate, via sensitivity tests, the importance of accurate τ and surface albedo measurements in ω retrievals at UV wavelengths.


2013 ◽  
Vol 6 (10) ◽  
pp. 2659-2669 ◽  
Author(s):  
A. Bayat ◽  
H. R. Khalesifard ◽  
A. Masoumi

Abstract. The polarized phase function of atmospheric aerosols has been investigated for the atmosphere of Zanjan, a city in northwest Iran. To do this, aerosol optical depth, Ångström exponent, single-scattering albedo, and polarized phase function have been retrieved from the measurements of a Cimel CE 318-2 polarized sun-photometer from February 2010 to December 2012. The results show that the maximum value of aerosol polarized phase function as well as the polarized phase function retrieved for a specific scattering angle (i.e., 60°) are strongly correlated (R = 0.95 and 0.95, respectively) with the Ångström exponent. The latter has a meaningful variation with respect to the changes in the complex refractive index of the atmospheric aerosols. Furthermore the polarized phase function shows a moderate negative correlation with respect to the atmospheric aerosol optical depth and single-scattering albedo (R = −0.76 and −0.33, respectively). Therefore the polarized phase function can be regarded as a key parameter to characterize the atmospheric particles of the region – a populated city in the semi-arid area and surrounded by some dust sources of the Earth's dust belt.


2019 ◽  
Vol 12 (12) ◽  
pp. 6489-6503
Author(s):  
Hiren Jethva ◽  
Omar Torres

Abstract. The aerosol single-scattering albedo (SSA) retrieved by the near-UV algorithm applied to the Aura Ozone Monitoring Instrument (OMI) measurements (OMAERUV) is compared with an independent inversion product derived from the sky radiometer network SKYNET – a ground-based radiation observation network with sites in Asia and Europe. The present work continues previous efforts to evaluate the consistency between the retrieved SSA from satellite and ground sensors. The automated spectral measurements of direct downwelling solar flux and sky radiances made by the SKYNET Sun-sky radiometer are used as input to an inversion algorithm that derives spectral aerosol optical depth (AOD) and single-scattering albedo (SSA) in the near-UV to near-IR spectral range. The availability of SKYNET SSA measurements in the ultraviolet region of the spectrum allows, for the first time, a direct comparison with OMI SSA retrievals eliminating the need of extrapolating the satellite retrievals to the visible wavelengths as is the case in the evaluation against the Aerosol Robotic Network (AERONET). An analysis of the collocated retrievals from over 25 SKYNET sites reveals that about 61 % (84 %) of OMI–SKYNET matchups agree within the absolute difference of ±0.03 (±0.05) for carbonaceous aerosols, 50 % (72 %) for dust aerosols, and 45 % (75 %) for urban–industrial aerosol types. Regionally, the agreement between the two inversion products is robust over several sites in Japan influenced by carbonaceous and urban–industrial aerosols; at the biomass burning site Phimai in Thailand; and the polluted urban site in New Delhi, India. The collocated dataset yields fewer matchups identified as dust aerosols mostly over the site Dunhuang with more than half of the matchup points confined to within ±0.03 limits. Altogether, the OMI–SKYNET retrievals agree within ±0.03 when SKYNET AOD (388 or 400 nm) is larger than 0.5 and the OMI UV Aerosol Index is larger than 0.2. The remaining uncertainties in both inversion products can be attributed to specific assumptions made in the retrieval algorithms, i.e., the uncertain calibration constant, assumption of spectral surface albedo and particle shape, and subpixel cloud contamination. The assumption of fixed and spectrally neutral surface albedo (0.1) in the SKYNET inversion appears to be unrealistic, leading to underestimated SSA, especially under lower aerosol load conditions. At higher AOD values for carbonaceous and dust aerosols, however, retrieved SSA values by the two independent inversion methods are generally consistent in spite of the differences in retrieval approaches.


2011 ◽  
Vol 50 (8) ◽  
pp. 1740-1755 ◽  
Author(s):  
Krzysztof M. Markowicz ◽  
Marcin L. Witek

AbstractThe aim of this study is to investigate the sensitivity of radiative-forcing computations to various contrail crystal shape models. Contrail optical properties in the shortwave and longwave ranges are derived using a ray-tracing geometric method and the discrete dipole approximation method, respectively. Both methods present good correspondence of the single-scattering albedo and the asymmetry parameter in a transition range (3–8 μm). There are substantial differences in single-scattering properties among 10 crystal models investigated here (e.g., hexagonal columns and plates with different aspect ratios, and spherical particles). The single-scattering albedo and the asymmetry parameter both vary by up to 0.1 among various crystal shapes. The computed single-scattering properties are incorporated in the moderate-resolution atmospheric radiance and transmittance model (MODTRAN) radiative transfer code to simulate solar and infrared fluxes at the top of the atmosphere. Particle shapes have a strong impact on the contrail radiative forcing in both the shortwave and longwave ranges. The differences in the net radiative forcing among optical models reach 50% with respect to the mean model value. The hexagonal-column and hexagonal-plate particles show the smallest net radiative forcing, and the largest forcing is obtained for the spheres. The balance between the shortwave forcing and longwave forcing is highly sensitive with respect to the assumed crystal shape and may even change the sign of the net forcing. The optical depth at which the mean diurnal radiative forcing changes sign from positive to negative varies from 4.5 to 10 for a surface albedo of 0.2 and from 2 to 6.5 for a surface albedo of 0.05. Contrails are probably never that optically thick (except for some aged contrail cirrus), however, and so will not have a cooling effect on climate.


2013 ◽  
Vol 13 (18) ◽  
pp. 9525-9541 ◽  
Author(s):  
F. Patadia ◽  
R. A. Kahn ◽  
J. A. Limbacher ◽  
S. P. Burton ◽  
R. A. Ferrare ◽  
...  

Abstract. Using Multi-angle Imaging SpectroRadiometer (MISR) and sub-orbital measurements from the 2006 INTEX-B/MILAGRO field campaign, in this study we explore MISR's ability to map different aerosol air mass types over the Mexico City metropolitan area. The aerosol air mass distinctions are based on shape, size and single scattering albedo retrievals from the MISR Research Aerosol Retrieval algorithm. In this region, the research algorithm identifies dust-dominated aerosol mixtures based on non-spherical particle shape, whereas spherical biomass burning and urban pollution particles are distinguished by particle size. Two distinct aerosol air mass types based on retrieved particle microphysical properties, and four spatially distributed aerosol air masses, are identified in the MISR data on 6 March 2006. The aerosol air mass type identification results are supported by coincident, airborne high-spectral-resolution lidar (HSRL) measurements. Aerosol optical depth (AOD) gradients are also consistent between the MISR and sub-orbital measurements, but particles having single-scattering albedo of ≈0.7 at 558 nm must be included in the retrieval algorithm to produce good absolute AOD comparisons over pollution-dominated aerosol air masses. The MISR standard V22 AOD product, at 17.6 km resolution, captures the observed AOD gradients qualitatively, but retrievals at this coarse spatial scale and with limited spherical absorbing particle options underestimate AOD and do not retrieve particle properties adequately over this complex urban region. However, we demonstrate how AOD and aerosol type mapping can be accomplished with MISR data over complex urban regions, provided the retrieval is performed at sufficiently high spatial resolution, and with a rich enough set of aerosol components and mixtures.


2005 ◽  
Vol 62 (4) ◽  
pp. 1093-1117 ◽  
Author(s):  
Jacek Chowdhary ◽  
Brian Cairns ◽  
Michael I. Mishchenko ◽  
Peter V. Hobbs ◽  
Glenn F. Cota ◽  
...  

Abstract The extensive set of measurements performed during the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) experiment provides a unique opportunity to evaluate aerosol retrievals over the ocean from multiangle, multispectral photometric, and polarimetric remote sensing observations by the airborne Research Scanning Polarimeter (RSP) instrument. Previous studies have shown the feasibility of retrieving particle size distributions and real refractive indices from such observations for visible wavelengths without prior knowledge of the ocean color. This work evaluates the fidelity of the aerosol retrievals using RSP measurements during the CLAMS experiment against aerosol properties derived from in situ measurements, sky radiance observations, and sun-photometer measurements, and further extends the scope of the RSP retrievals by using a priori information about the ocean color to constrain the aerosol absorption and vertical distribution. It is shown that the fine component of the aerosol observed on 17 July 2001 consisted predominantly of dirty sulfatelike particles with an extinction optical thickness of several tenths in the visible, an effective radius of 0.15 ± 0.025 μm and a single scattering albedo of 0.91 ± 0.03 at 550 nm. Analyses of the ocean color and sky radiance observations favor the lower boundary of aerosol single scattering albedo, while in situ measurements favor its upper boundary. Both analyses support the polarimetric retrievals of fine-aerosol effective radius and the consequent spectral variation in extinction optical depth. The estimated vertical distribution of this aerosol component depends on assumptions regarding the water-leaving radiances and is consistent with the top of the aerosol layer being close to the aircraft height (3500 m), with the bottom of the layer being between 2.7 km and the surface. The aerosol observed on 17 July 2001 also contained coarse-mode particles. Comparison of RSP data with sky radiance and in situ measurements suggests that this component consists of nonspherical particles with an effective radius in excess of 1 μm, and with the extinction optical depth being much less than one-tenth at 550 nm.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1226
Author(s):  
Lina Xun ◽  
Hui Lu ◽  
Congcong Qian ◽  
Yong Zhang ◽  
Shanshan Lyu ◽  
...  

We use two cloud screening methods—the clustering method and the multiplet method—to process the measurements of a sun photometer from March 2020 to April 2021 in Shouxian. The aerosol optical depth (AOD) and Angström parameters α and β are retrieved; variation characteristics and single scattering albedo are studied. The results show that: (1) The fitting coefficient of AOD retrieved by the two methods is 0.921, and the changing trend is consistent. The clustering method has fewer effective data points and days, reducing the overall average of AOD by 0.0542 (500 nm). (2) Diurnal variation of AOD can be divided into flat type, convex type, and concave type. Concave type and convex type occurred the most frequently, whereas flat type the least. (3) During observation, the overall average of AOD is 0.48, which is relatively high. Among them, AOD had a winter maximum (0.70), autumn and spring next (0.54 and 0.40), and a summer minimum (0.26). The variation trend of AOD and β is highly consistent, and the monthly mean of α is between 0.69 and 1.61, concerning mainly continental and urban aerosols. (4) Compared with others, the single scattering albedo in Shouxian is higher, reflecting strong scattering and weak aerosol absorption.


2015 ◽  
Vol 15 (18) ◽  
pp. 26191-26230 ◽  
Author(s):  
N. A. J. Schutgens ◽  
D. G. Partridge ◽  
P. Stier

Abstract. It is often implicitly assumed that over suitably long periods the mean of observations and models should be comparable, even if they have different temporal sampling. We assess the errors incurred due to ignoring temporal sampling and show they are of similar magnitude as (but smaller than) actual model errors (20–60 %). Using temporal sampling from remote sensing datasets (the satellite imager MODIS and the ground-based sun photometer network AERONET) and three different global aerosol models, we compare annual and monthly averages of full model data to sampled model data. Our results show that sampling errors as large as 100 % in AOT (Aerosol Optical Thickness), 0.4 in AE (Ångström Exponent) and 0.05 in SSA (Single Scattering Albedo) are possible. Even in daily averages, sampling errors can be significant. More-over these sampling errors are often correlated over long distances giving rise to artificial contrasts between pristine and polluted events and regions. Additionally, we provide evidence that suggests that models will underestimate these errors. To prevent sampling errors, model data should be temporally collocated to the observations before any analysis is made. We also discuss how this work has consequences for in-situ measurements (e.g. aircraft campaigns or surface measurements) in model evaluation.


2008 ◽  
Vol 8 (5) ◽  
pp. 17987-18005 ◽  
Author(s):  
A. Bagheri ◽  
B. Kjeldstad ◽  
B. Johnsen

Abstract. The aerosol optical depth (AOD) from biomass burning aerosols from eastern Europe was measured in Trondheim, Norway (63.43° N , 10.43° E) in May 2006. The event was observed as far as the Arctic. In the first part of this paper, the surface measurements of direct and global UV radiation (and retrieved AOD) are used to simulate the data using a radiative transfer model. Measured and simulated data were used to study the effect of biomass aerosol on the levels of surface UV radiation. We found reductions of up to 31%, 15% and 2% in direct, global and diffuse surface UV irradiance (at 350 nm, SZA=50°±0.5°) as compared to typical aerosol conditions. In the second part of our study, surface measurements of global and direct irradiance at five wavelength in UVB and UVA (305, 313, 320, 340 and 380 nm) were coupled with a radiative transfer model to produce values of aerosol single scattering albedo, ω. The aerosol single scattering albedo for biomass aerosols is compared to ω for background aerosols. The values of ω for biomass aerosols were 0.76 at 305 nm, 0.75 at 313 nm, 0.79 at 320 nm, 0.72 at 340 nm and 0.80 at 380 nm.


Sign in / Sign up

Export Citation Format

Share Document