scholarly journals A 2 year record of atmospheric mercury species at a background Southern Hemisphere station on Amsterdam Island

2014 ◽  
Vol 14 (10) ◽  
pp. 14439-14470
Author(s):  
H. Angot ◽  
M. Barret ◽  
O. Magand ◽  
M. Ramonet ◽  
A. Dommergue

Abstract. Scarcity of mercury species records in the Southern Hemisphere is a critical weak point for the development of appropriate modeling and regulation scenarios. Under the framework of the "Global Mercury Observation System" (GMOS) project, a monitoring station has been set up on Amsterdam Island (37°48' S, 77°34' E) in the remote southern Indian Ocean. For the first time in the Southern Hemisphere, a 2 year record of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particle-bound mercury (PBM) is presented. GEM concentrations were remarkably steady (1.03 ± 0.08 pg m−3) while RGM and PBM concentrations were very low and exhibited a strong variability (mean: 0.34 pg m−3 [range: 0.28–4.07 pg m−3] and mean: 0.67 pg m−3 [range: 0.28–12.67 pg m−3], respectively). Despite the remoteness of the island, wind sector analysis, air mass back trajectories and the observation of radonic storms highlighted a long-range contribution from the southern African continent to the GEM and PBM budgets in winter during the biomass burning season. Lowest concentrations of GEM were associated with southerly polar and marine air masses from the remote southern Indian Ocean. This unique dataset provides new baseline GEM concentrations in the Southern Hemisphere mid-latitudes for further modeling studies, while mercury speciation along with upcoming wet deposition data will help improving our understanding of mercury cycle in the marine boundary layer.

2014 ◽  
Vol 14 (20) ◽  
pp. 11461-11473 ◽  
Author(s):  
H. Angot ◽  
M. Barret ◽  
O. Magand ◽  
M. Ramonet ◽  
A. Dommergue

Abstract. Although essential to fully understand the cycling of mercury at the global scale, mercury species records in the Southern Hemisphere are scarce. Under the framework of the Global Mercury Observation System (GMOS) project, a monitoring station has been set up on Amsterdam Island (37°48´ S, 77°34´ E) in the remote southern Indian Ocean. For the first time in the Southern Hemisphere, a 2-year record of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particle-bound mercury (PBM) is presented. GEM concentrations were remarkably steady (1.03 ± 0.08 ng m−3) while RGM and PBM concentrations were very low and exhibited a strong variability (mean: 0.34 pg m−3, range: < detection limit–4.07 pg m−3; and mean: 0.67 pg m−3, range: < detection limit–12.67 pg m−3, respectively). Despite the remoteness of the island, wind sector analysis, air mass back trajectories and the observation of radonic storms highlighted a long-range contribution from the southern African continent to the GEM and PBM budgets from July to September during the biomass burning season. Low concentrations of GEM were associated with southerly polar and marine air masses from the remote southern Indian Ocean. This unique data set provides new baseline GEM concentrations in the Southern Hemisphere midlatitudes while mercury speciation along with upcoming wet deposition data will help to improve our understanding of the mercury cycle in the marine boundary layer.


2008 ◽  
Vol 8 (23) ◽  
pp. 7165-7180 ◽  
Author(s):  
Z.-Q. Xie ◽  
R. Sander ◽  
U. Pöschl ◽  
F. Slemr

Abstract. Atmospheric mercury depletion events (AMDEs) during polar springtime are closely correlated with bromine-catalyzed tropospheric ozone depletion events (ODEs). To study gas- and aqueous-phase reaction kinetics and speciation of mercury during AMDEs, we have included mercury chemistry into the box model MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere), which enables dynamic simulation of bromine activation and ODEs. We found that the reaction of Hg with Br atoms dominates the loss of gaseous elemental mercury (GEM). To explain the experimentally observed synchronous depletion of GEM and O3, the reaction rate of Hg+BrO has to be much lower than that of Hg+Br. The synchronicity is best reproduced with rate coefficients at the lower limit of the literature values for both reactions, i.e. kHg+Br≈3×10−13 and kHg+BrO≤1×10−15 cm3 molecule−1 s−1, respectively. Throughout the simulated AMDEs, BrHgOBr was the most abundant reactive mercury species, both in the gas phase and in the aqueous phase. The aqueous-phase concentrations of BrHgOBr, HgBr2, and HgCl2 were several orders of magnitude larger than that of Hg(SO3)22−. Considering chlorine chemistry outside depletion events (i.e. without bromine activation), the concentration of total divalent mercury in sea-salt aerosol particles (mostly HgCl42−) was much higher than in dilute aqueous droplets (mostly Hg(SO3)22−), and did not exhibit a diurnal cycle (no correlation with HO2 radicals).


2010 ◽  
Vol 7 (6) ◽  
pp. 537 ◽  
Author(s):  
Anne L. Soerensen ◽  
Henrik Skov ◽  
Matthew S. Johnson ◽  
Marianne Glasius

Environmental context Mercury is a neurotoxin that bioaccumulates in the aquatic food web. Atmospheric emissions from urban areas close to the coast could cause increased local mercury deposition to the ocean. Our study adds important new data to the current limited knowledge on atmospheric mercury emissions and dynamics in coastal urban areas. Abstract Approximately 50% of primary atmospheric mercury emissions are anthropogenic, resulting from e.g. emission hotspots in urban areas. Emissions from urban areas close to the coast are of interest because they could increase deposition loads to nearby coastal waters as well as contribute to long range transport of mercury. We present results from measurements of gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) in 15 coastal cities and their surrounding marine boundary layer (MBL). An increase of 15–90% in GEM concentration in coastal urban areas was observed compared with the remote MBL. Strong RGM enhancements were only found in two cities. In urban areas with statistically significant GEM/CO enhancement ratios, slopes between 0.0020 and 0.0087 ng m–3 ppb–1 were observed, which is consistent with other observations of anthropogenic enhancement. The emission ratios were used to estimate GEM emissions from the areas. A closer examination of data from Sydney (Australia), the coast of Chile, and Valparaiso region (Chile) in the southern hemisphere, is presented.


2016 ◽  
Author(s):  
Z. Ye ◽  
H. Mao ◽  
C.-J. Lin ◽  
S. Y. Kim

Abstract. A box model incorporating a state-of-the-art chemical mechanism for atmospheric mercury (Hg) cycling was developed to investigate oxidation of gaseous elemental mercury (GEM) at three locations in the northeastern United States: Appledore Island (marine), Thompson Farm (coastal, rural), and Pack Monadnock (inland, rural, elevated). The chemical mechanism improved model's ability to simulate the formation of gaseous oxidized mercury (GOM) at the study sites. At the coastal and inland sites, GEM oxidation was predominated by O3 and OH, contributing 80–99 % of total GOM production during daytime. H2O2 initiated GEM oxidation was significant (~ 33 % of the total GOM) at the inland site during nighttime. In the marine boundary layer (MBL), Br and BrO were dominant GEM oxidants contributing ~ 70 % of the total GOM production during mid-day, while O3 dominated GEM oxidation (50–90 % of GOM production) over the remaining day. Following the production of HgBr from GEM + Br, HgBr was oxidized by BrO, HO2, OH, ClO, and IO to form Hg(II) brominated GOM species. However, under atmospheric conditions, the prevalent GEM oxidants in the MBL could be Br / BrO or O3 / OH depending on Br and BrO mixing ratios. Relative humidity and products of the CH3O2 + BrO reaction possibly affected significantly the mixing ratios of Br or BrO radicals and subsequently GOM formation. Gas-particle partitioning could be potentially important in the production of GOM as well as Br and BrO at the marine site.


2015 ◽  
Vol 15 (2) ◽  
pp. 653-665 ◽  
Author(s):  
H. Zhang ◽  
X. W. Fu ◽  
C.-J. Lin ◽  
X. Wang ◽  
X. B. Feng

Abstract. This study reports the concentrations and potential sources of speciated atmospheric mercury at the Shangri-La Atmosphere Watch Regional Station (SAWRS), a pristine high-altitude site (3580 m a.s.l.) in Tibetan Plateau, China. Total gaseous mercury (TGM, defined as the sum of gaseous elemental mercury, GEM, and gaseous oxidized mercury, GOM), GOM and particulate-bound mercury (PBM) were monitored from November 2009 to November 2010 to investigate the characteristics and potential influence of the Indian summer monsoon (ISM) and the Westerlies on atmospheric transport of mercury. The mean concentrations (± standard deviation) of TGM, PBM and GOM were 2.55 ± 0.73 ng m−3, 38.82 ± 31.26 pg m−3 and 8.22 ± 7.90 pg m−3, respectively. A notable seasonal pattern of TGM concentrations was observed with higher concentrations at the beginning and the end of the ISM season. High TGM concentrations (> 2.5 ng m−3) were associated with the transport of dry air that carried regional anthropogenic emissions from both Chinese domestic and foreign (e.g., Myanmar, Bay of Bengal, and northern India) sources based on analysis of HYSPLIT4 back trajectories. Somewhat lower PBM and GOM levels during the ISM period were attributed to the enhanced wet scavenging. The high GOM and PBM were likely caused by local photo-chemical transformation under low RH and the domestic biofuel burning in cold seasons.


2016 ◽  
Vol 16 (13) ◽  
pp. 8461-8478 ◽  
Author(s):  
Zhuyun Ye ◽  
Huiting Mao ◽  
Che-Jen Lin ◽  
Su Youn Kim

Abstract. A box model incorporating a state-of-the-art chemical mechanism for atmospheric mercury (Hg) cycling was developed to investigate the oxidation of gaseous elemental mercury (GEM) at three locations in the northeastern United States: Appledore Island (AI; marine), Thompson Farm (TF; coastal, rural), and Pack Monadnock (PM; inland, rural, elevated). The chemical mechanism in this box model included the most up-to-date Hg and halogen chemistry. As a result, the box model was able to simulate reasonably the observed diurnal cycles of gaseous oxidized mercury (GOM) and chemical speciation bearing distinct differences between the three sites. In agreement with observations, simulated GOM diurnal cycles at AI and TF showed significant daytime peaks in the afternoon and nighttime minimums compared to flat GOM diurnal cycles at PM. Moreover, significant differences in the magnitude of GOM diurnal amplitude (AI > TF > PM) were captured in modeled results. At the coastal and inland sites, GEM oxidation was predominated by O3 and OH, contributing 80–99 % of total GOM production during daytime. H2O2-initiated GEM oxidation was significant (∼ 33 % of the total GOM) at the inland site during nighttime. In the marine boundary layer (MBL) atmosphere, Br and BrO became dominant GEM oxidants, with mixing ratios reaching 0.1 and 1 pptv, respectively, and contributing ∼ 70 % of the total GOM production during midday, while O3 dominated GEM oxidation (50–90 % of GOM production) over the remaining day when Br and BrO mixing ratios were diminished. The majority of HgBr produced from GEM+Br was oxidized by NO2 and HO2 to form brominated GOM species. Relative humidity and products of the CH3O2+BrO reaction possibly significantly affected the mixing ratios of Br or BrO radicals and subsequently GOM formation. Gas–particle partitioning could potentially be important in the production of GOM as well as Br and BrO at the marine site.


2008 ◽  
Vol 8 (4) ◽  
pp. 13197-13232 ◽  
Author(s):  
Z.-Q. Xie ◽  
R. Sander ◽  
U. Pöschl ◽  
F. Slemr

Abstract. Atmospheric mercury depletion events (AMDEs) during polar springtime are closely correlated with bromine-catalyzed tropospheric ozone depletion events (ODEs). To study gas- and aqueous-phase reaction kinetics and speciation of mercury during AMDEs, we have included mercury chemistry into the box model MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere), which enables dynamic simulation of bromine activation and ODEs. We found that the reaction of Hg with Br atoms dominates the loss of gaseous elemental mercury (GEM). To explain the experimentally observed synchronous destruction of Hg and O3, the reaction rate of Hg+BrO has to be much lower than that of Hg+Br. The synchronicity is best reproduced with rate coefficients at the lower limit of the literature values for both reactions, i.e. kHg+Br≈3×10-13 and kHg+BrO≤1×10-15cm3 mol-1 s-1, respectively. Throughout the simulated AMDEs, BrHgOBr was the most abundant reactive mercury species, both in the gas phase and in the aqueous phase. The aqueous phase concentrations of BrHgOBr, HgBr2, and HgCl2 were several orders of magnitude larger than that of Hg(SO3)2-2. Considering chlorine chemistry outside depletion events (i.e. without bromine activation), the concentration of total divalent mercury in sea-salt aerosol particles (mostly HgCl2) was much higher than in dilute aqueous droplets (mostly Hg(SO3)2-2), and did not exhibit a diurnal cycle (no correlation with HO2 radicals).


2021 ◽  
Author(s):  
Minish Panchall

A modeling study was conducted on the transformation and deposition patterns of atmospheric mercury in the Canadian Arctic. One Dimensional (1-D) local scale model was used to simulate the episodic depletions of gaseous elemental mercury (GEM) after polar sunrise at Alert, Canada. The model was developed by starting with existing meteorological model (LCM-Local Climate Model) which is coupled with Canadian Aerosol Module (CAM) and then adding modules specific to atmospheric mercury chemistry. The model is able to simulate local scale transport of mercury over the entire depth of the troposphere with a basic time step of 20 min. and incorporates current knowledge of transformation reactions of atmospheric mercury species. Three mercury species Hg(O), Hg(II) and Hg(p) were considered. The developed model was applied to a portion of the Canadian Arctic region, Alert, for the month of April 2002. The model was then evaluated by comparing model estimates of mercury species concentrations with the measurement data collected in the Canadian Arctic by Meteorological Services of Canada, Downsview, Ontario. The results from this modeling study agree reasonably well with some underestimation caused by lower conversion of gaseous elemental mercury (GEM) into reactive gaseous mercury (RGM) and subsequent conversion to total particulate mercury (TPM). A sensitivity analysis was also conducted to examine the depositions of mercury species in response to changes in ozone and soot concentrations.


2016 ◽  
Vol 16 (21) ◽  
pp. 13379-13387 ◽  
Author(s):  
Ingvar Wängberg ◽  
Michelle G. Nerentorp Mastromonaco ◽  
John Munthe ◽  
Katarina Gårdfeldt

Abstract. Within the EU-funded project, Global Mercury Observation System (GMOS) airborne mercury has been monitored at the background Råö measurement site on the western coast of Sweden from mid-May 2012 to the beginning of July 2013 and from the beginning of February 2014 to the end of May 2015. The following mercury species/fractions were measured: gaseous elemental mercury (GEM), particulate bound mercury (PBM) and gaseous oxidised mercury (GOM) using the Tekran measurement system. The mercury concentrations measured at the Råö site were found to be low in comparison to other, comparable, European measurement sites. A back-trajectory analysis to study the origin of air masses reaching the Råö site was performed. Due to the remote location of the Råö measurement station it receives background air about 60 % of the time. However, elevated mercury concentrations arriving with air masses coming from the south-east are noticeable. GEM and PBM concentrations show a clear annual variation with the highest values occurring during winter, whereas the highest concentrations of GOM were obtained in spring and summer. An evaluation of the diurnal pattern of GOM, with peak concentrations at midday or in the early afternoon, which often is observed at remote places, shows that it is likely to be driven by local meteorology in a similar way to ozone. Evidence that a significant part of the GOM measured at the Råö site has been formed in free tropospheric air is presented.


Sign in / Sign up

Export Citation Format

Share Document