scholarly journals Temporal and spatial variability of the stable isotopic composition of atmospheric molecular hydrogen: observations at six EUROHYDROS stations

2011 ◽  
Vol 11 (3) ◽  
pp. 10087-10120 ◽  
Author(s):  
A. M. Batenburg ◽  
S. Walter ◽  
G. Pieterse ◽  
I. Levin ◽  
M. Schmidt ◽  
...  

Abstract. Despite the potential of isotope measurements to improve our understanding of the global atmospheric molecular hydrogen (H2) cycle, few H2 isotope data have been published so far. Now, within the EUROpean network for atmospheric HYDRogen Observations and Studies project (EUROHYDROS), weekly to monthly air samples from six locations in a global sampling network have been analysed for hydrogen mixing ratio (m(H2)) and the stable hydrogen isotopic composition of H2 (δ(D,H2), hereafter referred to as δ(D)). The time series thus obtained now cover one to five years for all stations. This is the largest set of ground station observations of δ(D) so far. Annual average δ(D) values are higher at the Southern Hemisphere (SH) than at the Northern Hemisphere (NH) stations; the maximum is observed at Neumayer (Antarctica), and the minimum at the NH midlatitude or subtropical stations. The maximum seasonal differences in δ(D) range from ≈18‰ at Neumayer to ≈45‰ at Schauinsland (Southern Germany); in general, seasonal variability is largest at the NH stations. The timing of minima and maxima differs per station as well. In Alert (Arctic Canada), the variations in δ(D) and m(H2) can be approximated as simple harmonic functions with a ≈5-month phase shift. This out-of-phase seasonal behaviour of δ(D) and m(H2) can also be detected, but with a ≈6-month phase shift, at Mace Head and Cape Verde. However, no seasonal δ(D) cycle could be observed at Schauinsland, which likely reflects the larger influence of local sources and sinks at this continental station. At the two SH stations, no seasonal cycle could be detected in the δ(D) data. Assuming that the sink processes are the main drivers of the observed seasonality in m(H2) and δ(D) on the NH, the relative seasonal variations can be used to estimate the relative sink strength of the two major sinks, deposition to soils and atmospheric oxidation by the hydroxyl (OH) radical. For the NH coastal and marine stations this analysis shows that the relative contribution of soil uptake to the total sink processes increases with latitude.

2011 ◽  
Vol 11 (14) ◽  
pp. 6985-6999 ◽  
Author(s):  
A. M. Batenburg ◽  
S. Walter ◽  
G. Pieterse ◽  
I. Levin ◽  
M. Schmidt ◽  
...  

Abstract. Despite the potential of isotope measurements to improve our understanding of the global atmospheric molecular hydrogen (H2) cycle, few H2 isotope data have been published so far. Now, within the EUROpean network for atmospheric HYDRogen Observations and Studies project (EUROHYDROS), weekly to monthly air samples from six locations in a global sampling network have been analysed for H2 mixing ratio (m(H2)) and the stable isotopic composition of the H2 (δ(D,H2), hereafter referred to as δD). The time series thus obtained now cover one to five years for all stations. This is the largest set of ground station observations of δD so far. Annual average δD values are higher at the Southern Hemisphere (SH) than at the Northern Hemisphere (NH) stations; the maximum is observed at Neumayer (Antarctica), and the minimum at the non-arctic NH stations. The maximum seasonal differences in δD range from ≈18 ‰ at Neumayer to ≈45 ‰ at Schauinsland (Southern Germany); in general, seasonal variability is largest at the NH stations. The timing of minima and maxima differs per station as well. In Alert (Arctic Canada), the variations in δD and m(H2) can be approximated as simple harmonic functions with a ≈5-month relative phase shift. This out-of-phase seasonal behaviour of δD and m(H2) can also be detected, but delayed and with a ≈6-month relative phase shift, at Mace Head and Cape Verde. However, no seasonal δD cycle could be observed at Schauinsland, which likely reflects the larger influence of local sources and sinks at this continental station. At the two SH stations, no seasonal cycle could be detected in the δD data. If it is assumed that the sink processes are the main drivers of the observed seasonality in m(H2) and δD on the NH, the relative seasonal variations can be used to estimate the relative sink strength of the two major sinks, deposition to soils and atmospheric oxidation by the hydroxyl (OH) radical. For the NH coastal and marine stations this analysis suggests that the relative contribution of soil uptake to the total annual H2 removal increases with latitude.


2016 ◽  
Vol 147 ◽  
pp. 98-108 ◽  
Author(s):  
A.M. Batenburg ◽  
M.E. Popa ◽  
A.T. Vermeulen ◽  
W.C.M. van den Bulk ◽  
P.A.C. Jongejan ◽  
...  

2021 ◽  
Author(s):  
Jonathan Gropp ◽  
Qusheng Jin ◽  
Itay Halevy

AbstractMicrobial methane production (methanogenesis) is responsible for more than half of the annual emission of this major greenhouse gas to the atmosphere. Though the stable isotopic composition of methane is often used to characterize its sources and sinks, empirical descriptions of the isotopic signature of methanogenesis currently limit such attempts. We developed a biochemical-isotopic model of methanogenesis by CO2 reduction, which predicts carbon and hydrogen isotopic fractionations, and clumped isotopologue distributions, as functions of the cell’s environment. We mechanistically explain multiple-isotopic patterns in laboratory and natural settings and show that such patterns constrain the in-situ energetics of methanogenesis. Combining our model with environmental data, we infer that in almost all marine environments and gas deposits, energy-limited methanogenesis operates close to chemical and isotopic equilibrium.


2004 ◽  
Vol 35 (2) ◽  
pp. 119-137 ◽  
Author(s):  
S.D. Gurney ◽  
D.S.L. Lawrence

Seasonal variations in the stable isotopic composition of snow and meltwater were investigated in a sub-arctic, mountainous, but non-glacial, catchment at Okstindan in northern Norway based on analyses of δ18O and δD. Samples were collected during four field periods (August 1998; April 1999; June 1999 and August 1999) at three sites lying on an altitudinal transect (740–970 m a.s.l.). Snowpack data display an increase in the mean values of δ18O (increasing from a mean value of −13.51 to −11.49‰ between April and August), as well as a decrease in variability through the melt period. Comparison with a regional meteoric water line indicates that the slope of the δ18O–δD line for the snowpacks decreases over the same period, dropping from 7.49 to approximately 6.2.This change points to the role of evaporation in snowpack ablation and is confirmed by the vertical profile of deuterium excess. Snowpack seepage data, although limited, also suggest reduced values of δD, as might be associated with local evaporation during meltwater generation. In general, meltwaters were depleted in δ18O relative to the source snowpack at the peak of the melt (June), but later in the year (August) the difference between the two was not statistically significant. The diurnal pattern of isotopic composition indicates that the most depleted meltwaters coincide with the peak in temperature and, hence, meltwater production.


2021 ◽  
pp. 130854
Author(s):  
Fumikazu Akamatsu ◽  
Hideaki Shimizu ◽  
Yukari Igi ◽  
Aya Kamada ◽  
Kazuya Koyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document