scholarly journals Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations

2012 ◽  
Vol 12 (7) ◽  
pp. 16219-16257
Author(s):  
J.-H. Koo ◽  
Y. Wang ◽  
T. P. Kurosu ◽  
K. Chance ◽  
A. Rozanov ◽  
...  

Abstract. Arctic ozone depletion events (ODEs) are due to catalytic ozone loss driven by halogen chemistry. The presence of ODEs is affected not only by in situ chemistry but also by transport including advection of ozone-poor air mass and vertical mixing. To better characterize the ODEs, we analyze the combined set of surface, ozonesonde, and aircraft in situ measurements of ozone and bromine compounds during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) and the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) experiments (April 2008). Tropospheric BrO columns retrieved from satellite measurements and back trajectories calculations are used to investigate the characteristics of observed ODEs. The implications of the analysis results for the validation of the retrieval of tropospheric column BrO are also discussed. Time-lagged correlation analysis between in situ (surface and ozonesonde) measurements of ozone and satellite derived tropospheric BrO indicates that the ODEs are due to either local halogen-driven ozone loss or short-range (~1 day) transport from nearby regions with ozone depletion. The effect of in situ halogen-driven loss is also evident in the diurnal variation of surface ozone concentrations at Alert, Canada. High-BrO regions revealed by satellite measurements tend to be collocated with first-year sea ice, particularly over the Chukchi Sea. Aircraft observations indicate low-ozone air mass transported from these high-BrO regions. Correlation analyses of ozone with potential temperature and time-lagged tropospheric BrO column show that the vertical extent of local ozone loss is surprisingly deep (1–2 km) at Resolute and Churchill, Canada. The unstable boundary layer during ODEs at Churchill could potentially provide a source of free tropospheric BrO through convective transport and explain the significant negative correlation between free tropospheric ozone and tropospheric BrO column at this site.

2012 ◽  
Vol 12 (20) ◽  
pp. 9909-9922 ◽  
Author(s):  
J.-H. Koo ◽  
Y. Wang ◽  
T. P. Kurosu ◽  
K. Chance ◽  
A. Rozanov ◽  
...  

Abstract. Arctic ozone depletion events (ODEs) are caused by halogen catalyzed ozone loss. In situ chemistry, advection of ozone-poor air mass, and vertical mixing in the lower troposphere are important factors affecting ODEs. To better characterize the ODEs, we analyze the combined set of surface, ozonesonde, and aircraft in situ measurements of ozone and bromine compounds during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS), the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC), and the Arctic Intensive Ozonesonde Network Study (ARCIONS) experiments (April 2008). Tropospheric BrO columns retrieved from satellite measurements and back trajectory calculations are also used to investigate the characteristics of observed ODEs. In situ observations from these field experiments are inadequate to validate tropospheric BrO columns derived from satellite measurements. In view of this difficulty, we construct an ensemble of tropospheric column BrO estimates from two satellite (OMI and GOME-2) measurements and with three independent methods of calculating stratospheric BrO columns. Furthermore, we select analysis methods that do not depend on the absolute magnitude of column BrO, such as time-lagged correlation analysis of ozone and tropospheric column BrO, to understand characteristics of ODEs. Time-lagged correlation analysis between in situ (surface and ozonesonde) measurements of ozone and satellite derived tropospheric BrO columns indicates that the ODEs are due to either local halogen-driven ozone loss or short-range (∼1 day) transport from nearby regions with ozone depletion. The effect of in situ ozone loss is also evident in the diurnal variation difference between low (10th and 25th percentiles) and higher percentiles of surface ozone concentrations at Alert, Canada. Aircraft observations indicate low-ozone air mass transported from adjacent high-BrO regions. Correlation analyses of ozone with potential temperature and time-lagged tropospheric BrO column show that the vertical extent of local ozone loss is surprisingly deep (1–2 km) at Resolute and Churchill, Canada. The unstable boundary layer during ODEs at Churchill could potentially provide a source of free-tropospheric BrO through convective transport and explain the significant negative correlation between free-tropospheric ozone and tropospheric BrO column at this site.


2012 ◽  
Vol 12 (4) ◽  
pp. 11035-11077 ◽  
Author(s):  
Z. Buys ◽  
N. Brough ◽  
G. Huey ◽  
D. Tanner ◽  
R. von Glasow ◽  
...  

Abstract. There is much debate over the source of bromine radicals in the atmosphere that drives polar boundary layer ozone depletion events (ODEs), but there is strong evidence to suggest a source associated with the sea ice zone. Here we report the first high temporal resolution measurements of Br2, BrCl and BrO in coastal Antarctica, made using a Chemical Ionisation Mass Spectrometer (CIMS). Mixing ratios ranged from instrumental detection limits to 13 pptv for BrO, 45 pptv for Br2, and 6 pptv for BrCl. We find evidence for blowing snow as a source of reactive bromine both directly during a storm and subsequently from recycling of bromide deposited on the continental snowpack. An unusual event of trans-continental air mass transport might have been responsible for severe surface ozone depletion observed at Halley. The halogen source region was the Bellingshausen Sea, to the west of the Antarctic Peninsula, the air mass having spent 3 1/2 days in complete darkness prior to arrival at Halley. We, further, identify an artefact in daytime BrCl measurements arising from conversion of HOBr, similar to that already identified for CIMS observations of Br2. Model calculations using the MISTRA 0-D model suggest a 50–60% conversion of HOBr to Br2, and 5–10% conversion to BrCl. Careful data filtering enabled us to use the halogen observations, in conjunction with the MISTRA model, to explore the temperature dependence of the Br2:BrCl ratio. We find evidence of a ratio shift towards Br2 at temperatures below ~−21 °C, suggesting a relationship with hydrohalite (NaCl.2H2O) precipitation. This suite of Antarctic data provides the first analogue to similar measurements made in the Arctic.


2013 ◽  
Vol 13 (3) ◽  
pp. 1457-1467 ◽  
Author(s):  
A. E. Jones ◽  
E. W. Wolff ◽  
N. Brough ◽  
S. J.-B. Bauguitte ◽  
R. Weller ◽  
...  

Abstract. To probe the spatial extent of tropospheric ozone depletion events during Antarctic spring, a network of 10 autonomous ozone monitors was established around the Dronning Maud Land sector of Antarctica for a full calendar year. Together with manned stations in the area, the network covered a ~1200 km stretch of coast, as well as a transect ~300 km inland and to ~2000 m above sea level (a.s.l.). Here we present results from the spring period (August to October 2008). While some ozone depletion events were evident at only a single site, implying localised ozone destruction, others were evident across the network. The fact that, on occasions, ozone depletion events were observed at all coastal sites simultaneously, suggests the depleted air mass had a scale of at least 1200 km. As the ozone-poor air was advected from the Weddell Sea sea ice zone, the data imply that large areas over the Weddell Sea sea ice zone are significantly depleted in ozone on occasions during Antarctic spring.


2012 ◽  
Vol 12 (10) ◽  
pp. 27555-27588
Author(s):  
A. E. Jones ◽  
E. W. Wolff ◽  
N. Brough ◽  
S. J.-B. Bauguitte ◽  
R. Weller ◽  
...  

Abstract. To probe the spatial extent of tropospheric ozone depletion events during Antarctic spring, a network of 10 autonomous ozone monitors was established around the Dronning Maud Land sector of Antarctica for a full calendar year. Together with manned stations in the area, the network covered a ~1200 km stretch of coast, as well as a transect ~300 km inland and to ~2000 m above sea level (a.s.l.). Here we present results from the spring period (August to October 2008). While some ozone depletion events were evident at only a single site, implying localised ozone destruction, others were evident across the network. The fact that, on occasions, ozone depletion events were observed at all coastal sites simultaneously, suggests the depleted air mass had a scale of at least 1200 km. As the ozone-poor air was advected from the Weddell Sea sea ice zone, the data imply that large areas over the Weddell Sea sea ice zone are significantly depleted in ozone on occasions during Antarctic spring.


2021 ◽  
Author(s):  
Zhiyuan Gao ◽  
Nicolas-Xavier Geilfus ◽  
Alfonso Saiz-Lopez ◽  
Feiyue Wang

Abstract. The episodic build-up of gas-phase reactive bromine species over sea ice and snowpack in the springtime Arctic plays an important role in the boundary layer, causing annual concurrent depletion of ozone and gaseous elemental mercury during polar sunrise. Extensive studies have shown that these phenomena, known as bromine explosion events (BEEs), ozone depletion events (ODEs) and mercury depletion events (MDEs), respectively, are all triggered by gas-phase reactive bromine species that are photochemically activated from bromide via multi-phase reactions under freezing air temperatures. However, major knowledge gaps exist in both fundamental cryo-photochemical processes causing these events and meteorological conditions that may affect their timing and magnitude. Here, we report an outdoor mesocosm-scale study in which we successfully reproduced ODEs at the Sea-ice Environmental Research Facility (SERF) in Winnipeg, Canada. By monitoring ozone concentrations inside large, acrylic tubes over bromide-enriched artificial seawater during entire sea ice freeze-and-melt cycles, we observed mid-day photochemical ozone loss in winter in the boundary layer air immediately above the sea ice surface in a pattern that is characteristic of BEE-induced ODEs in the Arctic. The importance of UV radiation and the presence of a condensed phase (experimental sea ice or snow) in causing such surface ozone loss was demonstrated by comparing ozone concentrations between UV-transmitting and UV-blocking acrylic tubes under different air temperatures. The ability of reproducing BEE-induced ODEs at a mesocosm scale in a non-polar region provides a new approach to systematically studying the cryo-photochemical and meteorological processes leading to BEEs, ODEs, and MDEs in the Arctic, their role in biogeochemical cycles across the ocean-sea ice-atmosphere interfaces, and their sensitivities to climate change.


2021 ◽  
Author(s):  
Ramina Alwarda ◽  
Kristof Bognar ◽  
Kimberly Strong ◽  
Martyn Chipperfield ◽  
Sandip Dhomse ◽  
...  

<p>The Arctic winter of 2019-2020 was characterized by an unusually persistent polar vortex and temperatures in the lower stratosphere that were consistently below the threshold for the formation of polar stratospheric clouds (PSCs). These conditions led to ozone loss that is comparable to the Antarctic ozone hole. Ground-based measurements from a suite of instruments at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Canada (80.05°N, 86.42°W) were used to investigate chemical ozone depletion. The vortex was located above Eureka longer than in any previous year in the 20-year dataset and lidar measurements provided evidence of polar stratospheric clouds (PSCs) above Eureka. Additionally, UV-visible zenith-sky Differential Optical Absorption Spectroscopy (DOAS) measurements showed record ozone loss in the 20-year dataset, evidence of denitrification along with the slowest increase of NO<sub>2</sub> during spring, as well as enhanced reactive halogen species (OClO and BrO). Complementary measurements of HCl and ClONO<sub>2</sub> (chlorine reservoir species) from a Fourier transform infrared (FTIR) spectrometer showed unusually low columns that were comparable to 2011, the previous year with significant chemical ozone depletion. Record low values of HNO<sub>3</sub> in the FTIR dataset are in accordance with the evidence of PSCs and a denitrified atmosphere. Estimates of chemical ozone loss were derived using passive ozone from the SLIMCAT offline chemical transport model to account for dynamical contributions to the stratospheric ozone budget.</p>


2009 ◽  
Vol 9 (2) ◽  
pp. 8561-8586
Author(s):  
J. W. Bottenheim ◽  
S. Netcheva ◽  
S. Morin ◽  
S. V. Nghiem

Abstract. A full year of measurements of surface ozone over the Arctic Ocean far removed from land is presented (81° N – 88° N latitude). The data were obtained during the drift of the French schooner TARA between September 2006 and January 2008, while frozen in the Arctic Ocean. The data confirm that long periods of virtually total absence of ozone occur in the spring (mid March to mid June) after Polar sunrise. At other times of the year ozone concentrations are comparable to other oceanic observations with winter mole fractions of ca. 30–40 nmol mol−1 and summer minima of ca. 20 nmol mol−1. Contrary to earlier observations from ozone sonde data obtained at Arctic coastal observatories, the ambient temperature was well above −20°C during most ODEs (ozone depletion episodes). Backwards trajectory calculations suggest that during these ODEs the air had previously been in contact with the frozen ocean surface for several days and originated largely from the Siberian coast where several large open flaw leads developed in the spring of 2007.


2020 ◽  
Author(s):  
Yee Jun Tham ◽  
Nina Sarnela ◽  
Carlos A. Cuevas ◽  
Iyer Siddharth ◽  
Lisa Beck ◽  
...  

<p>Atmospheric halogens chemistry like the catalytic reaction of bromine and chlorine radicals with ozone (O<sub>3</sub>) has been known to cause the springtime surface-ozone destruction in the polar region. Although the initial atmospheric reactions of chlorine with ozone are well understood, the final oxidation steps leading to the formation of chlorate (ClO<sub>3</sub><sup>-</sup>) and perchlorate (ClO<sub>4</sub><sup>-</sup>) remain unclear due to the lack of direct evidence of their presence and fate in the atmosphere. In this study, we present the first high-resolution ambient data set of gas-phase HClO<sub>3</sub> (chloric acid) and HClO<sub>4</sub> (perchlorate acid) obtained from the field measurement at the Villum Research Station, Station Nord, in high arctic North Greenland (81°36’ N, 16°40’ W) during the spring of 2015. A state-of-the-art chemical ionization atmospheric pressure interface time-of-flight mass spectrometer (CI-APi-TOF) was used in negative ion mode with nitrate ion as the reagent ion to detect the gas-phase HClO<sub>3</sub> and HClO<sub>4</sub>. We measured significant level of HClO<sub>3</sub> and HClO<sub>4</sub> only during the springtime ozone depletion events in the Greenland, with concentration up to 9x10<sup>5</sup> molecule cm<sup>-3</sup>. Air mass trajectory analysis shows that the air during the ozone depletion event was confined to near-surface, indicating that the O<sub>3</sub> and surface of sea-ice/snowpack may play important roles in the formation of HClO<sub>3</sub> and HClO<sub>4</sub>. We used high-level quantum-chemical methods to calculate the ultraviolet-visible absorption spectra and cross-section of HClO<sub>3</sub> and HClO<sub>4</sub> in the gas-phase to assess their fates in the atmosphere. Overall, our results reveal the presence of HClO<sub>3</sub> and HClO<sub>4</sub> during ozone depletion events, which could affect the chlorine chemistry in the Arctic atmosphere.</p>


2010 ◽  
Vol 10 (14) ◽  
pp. 6569-6581 ◽  
Author(s):  
J. Kuttippurath ◽  
F. Goutail ◽  
J.-P. Pommereau ◽  
F. Lefèvre ◽  
H. K. Roscoe ◽  
...  

Abstract. The passive tracer method is used to estimate ozone loss from ground-based measurements in the Antarctic. A sensitivity study shows that the ozone depletion can be estimated within an accuracy of ~4%. The method is then applied to the ground-based observations from Arrival Heights, Belgrano, Concordia, Dumont d'Urville, Faraday, Halley, Marambio, Neumayer, Rothera, South Pole, Syowa, and Zhongshan for the diagnosis of ozone loss in the Antarctic. On average, the ten-day boxcar average of the vortex mean ozone column loss deduced from the ground-based stations was about 55±5% in 2005–2009. The ozone loss computed from the ground-based measurements is in very good agreement with those derived from satellite measurements (OMI and SCIAMACHY) and model simulations (REPROBUS and SLIMCAT), where the differences are within ±3–5%. The historical ground-based total ozone observations in October show that the depletion started in the late 1970s, reached a maximum in the early 1990s and stabilised afterwards due to saturation. There is no indication of ozone recovery yet. At southern mid-latitudes, a reduction of 20–50% is observed for a few days in October–November at the newly installed Rio Gallegos station. Similar depletion of ozone is also observed episodically during the vortex overpasses at Kerguelen in October–November and at Macquarie Island in July–August of the recent winters. This illustrates the significance of measurements at the edges of Antarctica.


2017 ◽  
Vol 17 (24) ◽  
pp. 14955-14974 ◽  
Author(s):  
Xiaoyi Zhao ◽  
Dan Weaver ◽  
Kristof Bognar ◽  
Gloria Manney ◽  
Luis Millán ◽  
...  

Abstract. Ground-based, satellite, and reanalysis datasets were used to identify two similar cyclone-induced surface ozone depletion events at Eureka, Canada (80.1° N, 86.4° W), in March 2007 and April 2011. These two events were coincident with observations of hydrogen deuterium oxide (HDO) depletion, indicating that condensation and sublimation occurred during the transport of the ozone-depleted air masses. Ice clouds (vapour and crystals) and aerosols were detected by lidar and radar when the ozone- and HDO-depleted air masses arrived over Eureka. For the 2007 event, an ice cloud layer was coincident with an aloft ozone depletion layer at 870 m altitude on 2–3 March, indicating this ice cloud layer contained bromine-enriched blowing-snow particles. Over the following 3 days, a shallow surface ozone depletion event (ODE) was observed at Eureka after the precipitation of bromine-enriched particles onto the local snowpack. A chemistry–climate model (UKCA) and a chemical transport model (pTOMCAT) were used to simulate the surface ozone depletion events. Incorporating the latest surface snow salinity data obtained for the Weddell Sea into the models resulted in improved agreement between the modelled and measured BrO concentrations above Eureka. MERRA-2 global reanalysis data and the FLEXPART particle dispersion model were used to study the link between the ozone and HDO depletion. In general, the modelled ozone and BrO showed good agreement with the ground-based observations; however, the modelled BrO and ozone in the near-surface layer are quite sensitive to the snow salinity. HDO depletion observed during these two blowing-snow ODEs was found to be weaker than pure Rayleigh fractionation. This work provides evidence of a blowing-snow sublimation process, which is a key step in producing bromine-enriched sea-salt aerosol.


Sign in / Sign up

Export Citation Format

Share Document