scholarly journals Simulation of nitrate, sulfate, and ammonium aerosols over the United States

2012 ◽  
Vol 12 (8) ◽  
pp. 19499-19527 ◽  
Author(s):  
J. M. Walker ◽  
J. H. Seinfeld ◽  
L. Clarisse ◽  
P.-F. Coheur ◽  
C. Clerbaux ◽  
...  

Abstract. Atmospheric concentrations of inorganic gases and aerosols (nitrate, sulfate, and ammonium) are simulated for 2009 over the United States using the chemical transport model GEOS-Chem. This work is motivated, in part, by the inability of previous modeling studies to reproduce observed high nitrate aerosol concentrations in California. Nitrate aerosol concentrations over most of the US are over-predicted relative to Interagency Monitoring of Protected Visual Environments (IMPROVE) and Clean Air Status and Trends Network (CASTNET) data. In California, on the other hand, nitrate and ammonium are under-predicted as compared to California Air Resources Board (CARB) measurements. Over-prediction of nitrate in the East and Midwest is consistent with results of recent studies, which have suggested that nighttime nitric acid formation by heterogeneous hydrolysis of N2O5 is over-predicted with current values of the N2O5 uptake coefficient, γ, onto aerosols. Accordingly, the value of γ is reduced here by a factor of 10. Despite this, predicted nitrate levels in the US Midwest remain higher than those measured and over-prediction of nitrate in this region remains to be explained. Data from the Infrared Atmospheric Sounding Interferometer (IASI) onboard the MetOp-A satellite indicate the presence of a strong ammonia maximum in central and southern California that is not present in the simulations, which are based on the EPA National Emissions Inventory (NEI) NH3 emission inventory. In order to predict ammonia columns similar to the satellite measurements in the San Joaquin Valley, CA and Riverside, CA, the current ammonia emission inventory in California would need to be increased substantially. Based on the sensitivity of ammonium nitrate formation to the availability of ammonia, the present results suggest that under-prediction of ammonia emissions is likely the main cause for the under-prediction of nitrate aerosol in California.

2012 ◽  
Vol 12 (6) ◽  
pp. 3131-3145 ◽  
Author(s):  
A. P. K. Tai ◽  
L. J. Mickley ◽  
D. J. Jacob ◽  
E. M. Leibensperger ◽  
L. Zhang ◽  
...  

Abstract. We applied a multiple linear regression model to understand the relationships of PM2.5 with meteorological variables in the contiguous US and from there to infer the sensitivity of PM2.5 to climate change. We used 2004–2008 PM2.5 observations from ~1000 sites (~200 sites for PM2.5 components) and compared to results from the GEOS-Chem chemical transport model (CTM). All data were deseasonalized to focus on synoptic-scale correlations. We find strong positive correlations of PM2.5 components with temperature in most of the US, except for nitrate in the Southeast where the correlation is negative. Relative humidity (RH) is generally positively correlated with sulfate and nitrate but negatively correlated with organic carbon. GEOS-Chem results indicate that most of the correlations of PM2.5 with temperature and RH do not arise from direct dependence but from covariation with synoptic transport. We applied principal component analysis and regression to identify the dominant meteorological modes controlling PM2.5 variability, and show that 20–40% of the observed PM2.5 day-to-day variability can be explained by a single dominant meteorological mode: cold frontal passages in the eastern US and maritime inflow in the West. These and other synoptic transport modes drive most of the overall correlations of PM2.5 with temperature and RH except in the Southeast. We show that interannual variability of PM2.5 in the US Midwest is strongly correlated with cyclone frequency as diagnosed from a spectral-autoregressive analysis of the dominant meteorological mode. An ensemble of five realizations of 1996–2050 climate change with the GISS general circulation model (GCM) using the same climate forcings shows inconsistent trends in cyclone frequency over the Midwest (including in sign), with a likely decrease in cyclone frequency implying an increase in PM2.5. Our results demonstrate the need for multiple GCM realizations (because of climate chaos) when diagnosing the effect of climate change on PM2.5, and suggest that analysis of meteorological modes of variability provides a computationally more affordable approach for this purpose than coupled GCM-CTM studies.


2003 ◽  
Vol 37 (18) ◽  
pp. 2539-2550 ◽  
Author(s):  
Marian Diaz Goebes ◽  
Ross Strader ◽  
Cliff Davidson

2016 ◽  
Vol 16 (18) ◽  
pp. 12305-12328 ◽  
Author(s):  
Luke D. Schiferl ◽  
Colette L. Heald ◽  
Martin Van Damme ◽  
Lieven Clarisse ◽  
Cathy Clerbaux ◽  
...  

Abstract. The variability of atmospheric ammonia (NH3), emitted largely from agricultural sources, is an important factor when considering how inorganic fine particulate matter (PM2.5) concentrations and nitrogen cycling are changing over the United States. This study combines new observations of ammonia concentration from the surface, aboard aircraft, and retrieved by satellite to both evaluate the simulation of ammonia in a chemical transport model (GEOS-Chem) and identify which processes control the variability of these concentrations over a 5-year period (2008–2012). We find that the model generally underrepresents the ammonia concentration near large source regions (by 26 % at surface sites) and fails to reproduce the extent of interannual variability observed at the surface during the summer (JJA). Variability in the base simulation surface ammonia concentration is dominated by meteorology (64 %) as compared to reductions in SO2 and NOx emissions imposed by regulation (32 %) over this period. Introduction of year-to-year varying ammonia emissions based on animal population, fertilizer application, and meteorologically driven volatilization does not substantially improve the model comparison with observed ammonia concentrations, and these ammonia emissions changes have little effect on the simulated ammonia concentration variability compared to those caused by the variability of meteorology and acid-precursor emissions. There is also little effect on the PM2.5 concentration due to ammonia emissions variability in the summer when gas-phase changes are favored, but variability in wintertime emissions, as well as in early spring and late fall, will have a larger impact on PM2.5 formation. This work highlights the need for continued improvement in both satellite-based and in situ ammonia measurements to better constrain the magnitude and impacts of spatial and temporal variability in ammonia concentrations.


2020 ◽  
Vol 20 (20) ◽  
pp. 11907-11922
Author(s):  
Peiyu Cao ◽  
Chaoqun Lu ◽  
Jien Zhang ◽  
Avani Khadilkar

Abstract. The increasing demands of food and biofuel have promoted cropland expansion and nitrogen (N) fertilizer enrichment in the United States over the past century. However, the role of such long-term human activities in influencing the spatiotemporal patterns of ammonia (NH3) emission remains poorly understood. Based on an empirical model and time-series gridded datasets including temperature, soil properties, N fertilizer management, and cropland distribution history, we have quantified monthly fertilizer-induced NH3 emission across the contiguous US from 1900 to 2015. Our results show that N-fertilizer-induced NH3 emission in the US has increased from <50 Gg N yr−1 before the 1960s to 641 Gg N yr−1 in 2015, for which corn and spring wheat are the dominant contributors. Meanwhile, urea-based fertilizers gradually grew to the largest NH3 emitter and accounted for 78 % of the total increase during 1960–2015. The factorial contribution analysis indicates that the rising N fertilizer use rate dominated the NH3 emission increase since 1960, whereas the impacts of temperature, cropland distribution and rotation, and N fertilizer type varied among regions and over periods. Geospatial analysis reveals that the hot spots of NH3 emissions have shifted from the central US to the Northern Great Plains from 1960 to 2015. The increasing NH3 emissions in the Northern Great Plains have been found to closely correlate to the elevated NH4+ deposition in this region over the last 3 decades. This study shows that April, May, and June account for the majority of NH3 emission in a year. Interestingly, the peak emission month has shifted from May to April since the 1960s. Our results imply that the northwestward corn and spring wheat expansion and growing urea-based fertilizer uses have dramatically altered the spatial pattern and temporal dynamics of NH3 emission, impacting air pollution and public health in the US.


2010 ◽  
Vol 10 (9) ◽  
pp. 21259-21301 ◽  
Author(s):  
H. O. T. Pye ◽  
A. W. H. Chan ◽  
M. P. Barkley ◽  
J. H. Seinfeld

Abstract. Reactive nitrogen compounds, specifically NOx and NO3, likely influence global organic aerosol levels. To assess these interactions, GEOS-Chem, a chemical transport model, is updated to include improved biogenic emissions (following MEGAN v2.1/2.04), a new organic aerosol tracer lumping scheme, aerosol from nitrate radical (NO3) oxidation of isoprene, and NOx-dependent terpene aerosol yields. As a result of significant nighttime terpene emissions, fast reaction of monoterpenes with the nitrate radical, and relatively high aerosol yields from NO3 oxidation, biogenic hydrocarbon-NO3 reactions are expected to be a major contributor to surface level aerosol concentrations in anthropogenically influenced areas such as the United States. By including aerosol from nitrate radical oxidation in GEOS-Chem, terpene aerosol approximately doubles and isoprene aerosol is enhanced by 30 to 40% in the Southeast United States. In terms of the global budget of organic aerosol, however, aerosol from nitrate radical oxidation is somewhat minor (slightly more than 3 Tg/yr) due to the relatively high volatility of organic-NO3 oxidation products. Globally, 69 to 88 Tg/yr of organic aerosol is predicted to be produced annually, of which 14–15 Tg/yr is from oxidation of monoterpenes and sesquiterpenes and 8–9 Tg/yr from isoprene.


2020 ◽  
Author(s):  
Yang Li ◽  
Loretta J. Mickley ◽  
Pengfei Liu ◽  
Jed O. Kaplan

Abstract. Almost US$ 3bn per year is appropriated for wildfire management on public land in the United States. Recent studies have suggested that ongoing climate change will lead to warmer and drier conditions in the Western United States with a consequent increase in the number and size of wildfires, yet large uncertainty exists in these projections. To assess the influence of future changes in climate and land cover on lightning-caused wildfires in National Forests and Parks of the Western United States and the consequences of these fires on air quality, we link a dynamic vegetation model that includes a process-based representation of fire (LPJ-LMfire) to a global chemical transport model (GEOS-Chem). Under a scenario of moderate future climate change (RCP4.5), increasing lightning-caused wildfire enhances the burden of smoke fine particulate matter (PM), with mass concentration increases of ~ 53 % by the late-21st century during the fire season. In a high-emissions scenario (RCP8.5), smoke PM concentrations double by 2100. RCP8.5 also shows large, northward shifts in dry matter burned, leading to enhanced lightning-caused fire activity especially over forests in the northern states.


2016 ◽  
Author(s):  
Luke D. Schiferl ◽  
Colette L. Heald ◽  
Martin Van Damme ◽  
Lieven Clarisse ◽  
Cathy Clerbaux ◽  
...  

Abstract. The variability of atmospheric ammonia (NH3), emitted largely from agricultural sources, is an important factor when considering how inorganic fine particulate matter (PM2.5) concentrations and nitrogen cycling are changing over the United States. This study combines new observations of ammonia concentration from the surface, aboard aircraft, and retrieved by satellite to both evaluate the simulation of ammonia in a chemical transport model (GEOS-Chem) and identify which processes control the variability of these concentrations over a 5-year period (2008–2012). We find that the model generally underrepresents the ammonia concentration near large source regions and fails to reproduce the extent of interannual variability observed at the surface during the summer (JJA). Variability in the base simulation surface ammonia concentration is dominated by meteorology (64 %) as compared to reductions in SO2 and NOx emissions imposed by regulation (32 %) over this period. Introduction of year-to-year varying ammonia emissions based on animal population, fertilizer application, and meteorologically driven volatilization does not substantially improve the model comparison with observed ammonia concentrations, and these ammonia emissions changes have little effect on the simulated ammonia concentration variability compared to those caused by the variability of meteorology and acid-precursor emissions. There is also little effect on the PM2.5 concentration due to ammonia emissions variability in the summer when gas-phase changes are favored, but variability in wintertime emissions, as well as in early spring and late fall, will have a larger impact on PM2.5 formation. Further, this work highlights the need for continued improvement in both satellite-based and in situ ammonia measurements to better constrain the magnitude and impacts of spatial and temporal variability in ammonia concentrations.


2020 ◽  
Vol 20 (14) ◽  
pp. 8827-8838
Author(s):  
Yang Li ◽  
Loretta J. Mickley ◽  
Pengfei Liu ◽  
Jed O. Kaplan

Abstract. Almost USD 3 billion per year is appropriated for wildfire management on public land in the United States. Recent studies have suggested that ongoing climate change will lead to warmer and drier conditions in the western United States, with a consequent increase in the number and size of wildfires, yet large uncertainty exists in these projections. To assess the influence of future changes in climate and land cover on lightning-caused wildfires in the national forests and parks of the western United States and the consequences of these fires on air quality, we link a dynamic vegetation model that includes a process-based representation of fire (LPJ-LMfire) to a global chemical transport model (GEOS-Chem). Under a scenario of moderate future climate change (RCP4.5), increasing lightning-caused wildfire enhances the burden of smoke fine particulate matter (PM), with mass concentration increases of ∼53 % by the late 21st century during the fire season in the national forests and parks of the western United States. In a high-emissions scenario (RCP8.5), smoke PM concentrations double by 2100. RCP8.5 also shows enhanced lightning-caused fire activity, especially over forests in the northern states.


2012 ◽  
Vol 12 (10) ◽  
pp. 4539-4554 ◽  
Author(s):  
L. Zhang ◽  
D. J. Jacob ◽  
E. M. Knipping ◽  
N. Kumar ◽  
J. W. Munger ◽  
...  

Abstract. We simulate nitrogen deposition over the US in 2006–2008 by using the GEOS-Chem global chemical transport model at 1/2°×2/3° horizontal resolution over North America and adjacent oceans. US emissions of NOx and NH3 in the model are 6.7 and 2.9 Tg N a−1 respectively, including a 20% natural contribution for each. Ammonia emissions are a factor of 3 lower in winter than summer, providing a good match to US network observations of NHx (≡NH3 gas + ammonium aerosol) and ammonium wet deposition fluxes. Model comparisons to observed deposition fluxes and surface air concentrations of oxidized nitrogen species (NOy) show overall good agreement but excessive wintertime HNO3 production over the US Midwest and Northeast. This suggests a model overestimate N2O5 hydrolysis in aerosols, and a possible factor is inhibition by aerosol nitrate. Model results indicate a total nitrogen deposition flux of 6.5 Tg N a−1 over the contiguous US, including 4.2 as NOy and 2.3 as NHx. Domestic anthropogenic, foreign anthropogenic, and natural sources contribute respectively 78%, 6%, and 16% of total nitrogen deposition over the contiguous US in the model. The domestic anthropogenic contribution generally exceeds 70% in the east and in populated areas of the west, and is typically 50–70% in remote areas of the west. Total nitrogen deposition in the model exceeds 10 kg N ha−1 a−1 over 35% of the contiguous US.


Sign in / Sign up

Export Citation Format

Share Document