scholarly journals The first aerosol indirect effect quantified through airborne remote sensing during VOCALS-REx

2012 ◽  
Vol 12 (9) ◽  
pp. 25441-25485
Author(s):  
D. Painemal ◽  
P. Zuidema

Abstract. The first aerosol indirect effect (1AIE) is investigated using a combination of in situ and remotely-sensed aircraft (NCAR C-130) observations acquired during VOCALS-REx over the Southeast Pacific stratocumulus cloud regime. Satellite analyses have previously identified a high albedo susceptibitility to changes in cloud microphysics and aerosols over this region. The 1AIE was broken down into the product of two independently-estimated terms: the cloud aerosol interaction metric ACIτ =dln τ/dln Na|LWP, and the relative albedo (A) susceptibility SR-τ = dA/3dln τ|LWP, with τ and Na denoting retrieved cloud optical thickness and in-situ aerosol concentration, respectively and calculated for fixed intervals of liquid water path (LWP). ACIτ was estimated by combining in-situ Na sampled below the cloud, with τ and LWP derived from, respectively, simultaneous upward-looking broadband irradiance and narrow field-of-view millimeter-wave radiometer measurements, collected at 1 Hz during four eight-hour daytime flights by the C-130 aircraft. ACIτ values were typically large, close to the physical upper limit (0.33), increasing with LWP. The high ACIτ values were in agreement with other in-situ airborne studies in pristine marine stratocumulus and reflect the imposition of a LWP constraint and simultaneity of aerosol and cloud measurements. SR-τ increased with LWP and τ, reached a maximum SR-τ (0.086) for LWP (τ) of 58 g m−2 (13–14), decreasing slightly thereafter. The net first aerosol indirect effect thus increased over the LWP range of 30–80 g m−2. These values were consistent with satellite estimates derived from instantaneous, collocated CERES albedo and MODIS-retrieved droplet number concentrations at 50 km resolution. The consistency of the airborne and satellite estimates (for airborne remotely sensed Nd < 1100 cm−3), despite their independent approaches, differences in observational scales, and retrieval assumptions, is hypothesized to reflect the robust remote sensing conditions for these homogeneous clouds. We recommend the Southeast Pacific for a regional assessment of the first aerosol indirect effect in climate models on this basis.

2013 ◽  
Vol 13 (2) ◽  
pp. 917-931 ◽  
Author(s):  
D. Painemal ◽  
P. Zuidema

Abstract. The first aerosol indirect effect (1AIE) is investigated using a combination of in situ and remotely-sensed aircraft (NCAR C-130) observations acquired during VOCALS-REx over the southeast Pacific stratocumulus cloud regime. Satellite analyses have previously identified a high albedo susceptibitility to changes in cloud microphysics and aerosols over this region. The 1AIE was broken down into the product of two independently-estimated terms: the cloud aerosol interaction metric ACIτ =dlnτ/dlnNa|LWP , and the relative albedo (A) susceptibility SR-τ =dA/3dlnτ|LWP, with τ and Na denoting retrieved cloud optical thickness and in situ aerosol concentration respectively and calculated for fixed intervals of liquid water path (LWP). ACIτ was estimated by combining in situ Na sampled below the cloud, with τ and LWP derived from, respectively, simultaneous upward-looking broadband irradiance and narrow field-of-view millimeter-wave radiometer measurements, collected at 1 Hz during four eight-hour daytime flights by the C-130 aircraft. ACIτ values were typically large, close to the physical upper limit (0.33), with a modest increase with LWP. The high ACIτ values slightly exceed values reported from many previous in situ airborne studies in pristine marine stratocumulus and reflect the imposition of a LWP constraint and simultaneity of aerosol and cloud measurements. SR-τ increased with LWP and τ, reached a maximum SR-τ (0.086) for LWP (τ) of 58 g m−2 (~14), and decreased slightly thereafter. The 1AIE thus increased with LWP and is comparable to a radiative forcing of −3.2– −3.8 W m−2 for a 10% increase in Na, exceeding previously-reported global-range values. The aircraft-derived values are consistent with satellite estimates derived from instantaneous, collocated Clouds and the Earth's Radiant Energy System (CERES) albedo and MOderate resolution Imaging Spectroradiometer (MODIS)-retrieved droplet number concentrations at 50 km resolution. The consistency of the airborne and satellite estimates, despite their independent approaches, differences in observational scales, and retrieval assumptions, is hypothesized to reflect the ideal remote sensing conditions for these homogeneous clouds. We recommend the southeast Pacific for regional model assessments of the first aerosol indirect effect on this basis. This airborne remotely-sensed approach towards quantifying 1AIE should in theory be more robust than in situ calculations because of increased sampling. However, although the technique does not explicitly depend on a remotely-derived cloud droplet number concentration (Nd), the at-times unrealistically-high Nd values suggest more emphasis on accurate airborne radiometric measurements is needed to refine this approach.


2012 ◽  
Vol 12 (3) ◽  
pp. 7829-7877
Author(s):  
H. M. Jones ◽  
J. Haywood ◽  
F. Marenco ◽  
D. O'Sullivan ◽  
J. Meyer ◽  
...  

Abstract. Contrails and especially their evolution into cirrus-like clouds are thought to have very important effects on local and global radiation budgets, though are generally not well represented in global climate models. Lack of contrail parameterisations is due to the limited availability of in situ contrail measurements which are difficult to obtain. Here we present a methodology for successful sampling and interpretation of contrail microphysical and radiative data using both in situ and remote sensing instrumentation on board the FAAM BAe146 UK research aircraft as part of the COntrails Spreading Into Cirrus (COSIC) study. Forecast models were utilised to determine flight regions suitable for contrail formation and sampling; regions that were both free of cloud but showed a high probability of occurrence of air mass being supersaturated with respect to ice. The FAAM research aircraft, fitted with cloud microphysics probes and remote sensing instruments, formed a distinctive spiral-shaped contrail in the predicted area by flying in an orbit over the same ground position as the wind advected the contrails to the east. Parts of these contrails were sampled during the completion of four orbits, with sampled contrail regions being between 7 and 30 min old. Lidar measurements were useful for in-flight determination of the location and spatial extent of the contrails, and also to report extinction values that agreed well with those calculated from the microphysical data. A shortwave spectrometer was also able to detect the contrails, though the signal was weak due to the dispersion and evaporation of the contrails. Post-flight the UK Met Office NAME III dispersion model was successfully used as a tool for modelling the dispersion of the persistent contrail; determining its location and age, and determining when there was interference from other measured other aircraft contrails or when cirrus encroached on the area later in the flight. The persistent contrails were found to consist of small (~10 μm) plate-like crystals where growth of ice crystals to larger sizes (~100 μm) was detected when higher water vapour levels were present. Using the cloud microphysics data, extinction co-efficient values were calculated and found to be 0.01–1 km−1. The contrails formed during the flight (referred to as B587) were found to have a visible lifetime of ~40 min, and limited water vapour supply was thought to have suppressed ice crystal growth.


2012 ◽  
Vol 12 (17) ◽  
pp. 8157-8175 ◽  
Author(s):  
H. M. Jones ◽  
J. Haywood ◽  
F. Marenco ◽  
D. O'Sullivan ◽  
J. Meyer ◽  
...  

Abstract. Contrails and especially their evolution into cirrus-like clouds are thought to have very important effects on local and global radiation budgets, though are generally not well represented in global climate models. Lack of contrail parameterisations is due to the limited availability of in situ contrail measurements which are difficult to obtain. Here we present a methodology for successful sampling and interpretation of contrail microphysical and radiative data using both in situ and remote sensing instrumentation on board the FAAM BAe146 UK research aircraft as part of the COntrails Spreading Into Cirrus (COSIC) study. Forecast models were utilised to determine flight regions suitable for contrail formation and sampling; regions that were both free of cloud but showed a high probability of occurrence of air mass being supersaturated with respect to ice. The FAAM research aircraft, fitted with cloud microphysics probes and remote sensing instruments, formed a distinctive spiral-shaped contrail in the predicted area by flying in an orbit over the same ground position as the wind advected the contrails to the east. Parts of these contrails were sampled during the completion of four orbits, with sampled contrail regions being between 7 and 30 min old. Lidar measurements were useful for in-flight determination of the location and spatial extent of the contrails, and also to report extinction values that agreed well with those calculated from the microphysical data. A shortwave spectrometer was also able to detect the contrails, though the signal was weak due to the dispersion and evaporation of the contrails. Post-flight the UK Met Office NAME III dispersion model was successfully used as a tool for modelling the dispersion of the persistent contrail; determining its location and age, and determining when there was interference from other measured aircraft contrails or when cirrus encroached on the area later in the flight. The persistent contrails were found to consist of small (~10 μm) plate-like crystals where growth of ice crystals to larger sizes (~100 μm) was typically detected when higher water vapour levels were present. Using the cloud microphysics data, extinction co-efficient values were calculated and found to be 0.01–1 km−1. The contrails formed during the flight (referred to as B587) were found to have a visible lifetime of ~40 min, and limited water vapour supply was thought to have suppressed ice crystal growth.


2006 ◽  
Vol 63 (6) ◽  
pp. 1605-1622 ◽  
Author(s):  
Huiwen Xue ◽  
Graham Feingold

Abstract The effects of aerosol on warm trade cumulus clouds are investigated using a large-eddy simulation with size-resolved cloud microphysics. It is shown that, as expected, increases in aerosols cause a reduction in precipitation and an increase in the cloud-averaged liquid water path (LWP). However, for the case under study, cloud fraction, cloud size, cloud-top height, and depth decrease in response to increasing aerosol concentration, contrary to accepted hypotheses associated with the second aerosol indirect effect. It is found that the complex responses of clouds to aerosols are determined by competing effects of precipitation and droplet evaporation associated with entrainment. As aerosol concentration increases, precipitation suppression tends to maintain the clouds and lead to higher cloud LWP, whereas cloud droplets become smaller and evaporate more readily, which tends to dissipate the clouds and leads to lower cloud fraction, cloud size, and depth. An additional set of experiments with higher surface latent heat flux, and hence higher LWP and drizzle rate, was also performed. Changes in cloud properties due to aerosols have the same trends as in the base runs, although the magnitudes of the changes are larger. Evidence for significant stabilization (or destabilization) of the subcloud layer due to drizzle is not found, mainly because drizzling clouds cover only a small fraction of the domain. It is suggested that cloud fraction may only increase with increasing aerosol loading for larger clouds that are less susceptible to entrainment and evaporation. Finally, it is noted that at any given aerosol concentration the dynamical variability in bulk cloud parameters such as LWP tends to be larger than the aerosol-induced changes in these parameters, indicating that the second aerosol indirect effect may be hard to measure in this cloud type. The variability in cloud optical depth is, however, dominated by changes in aerosol, rather than dynamics.


2012 ◽  
Vol 93 (5) ◽  
pp. 653-668 ◽  
Author(s):  
Zhien Wang ◽  
Jeffrey French ◽  
Gabor Vali ◽  
Perry Wechsler ◽  
Samuel Haimov ◽  
...  

Clouds are a critical component of the Earth's coupled water and energy cycles. Poor understanding of cloud–radiation–dynamics feedbacks results in large uncertainties in forecasting human-induced climate changes. Better understanding of cloud microphysical and dynamical processes is critical to improving cloud parameterizations in climate models as well as in cloud-resolving models. Airborne in situ and remote sensing can make critical contributions to progress. Here, a new integrated cloud observation capability developed for the University of Wyoming King Air is described. The suite of instruments includes the Wyoming Cloud Lidar, a 183- GHz microwave radiometer, the Wyoming Cloud Radar, and in situ probes. Combined use of these remote sensor measurements yields more complete descriptions of the vertical structure of cloud microphysical properties and of cloud-scale dynamics than that attainable through ground-based remote sensing or in situ sampling alone. Together with detailed in situ data on aerosols, hydrometeors, water vapor, thermodynamic, and air motion parameters, an advanced observational capability was created to study cloud-scale processes from a single aircraft. The Wyoming Airborne Integrated Cloud Observation (WAICO) experiment was conducted to demonstrate these new capabilities and examples are presented to illustrate the results obtained.


2014 ◽  
Vol 14 (10) ◽  
pp. 15523-15543
Author(s):  
J. Tonttila ◽  
H. Järvinen ◽  
P. Räisänen

Abstract. Impacts of representing cloud microphysical processes in a stochastic subcolumn framework are investigated, with emphasis on estimating the aerosol indirect effect. It is shown that subgrid treatment of cloud activation and autoconversion of cloud water to rain reduce the impact of anthropogenic aerosols on cloud properties and thus reduce the global mean aerosol indirect effect by 18%, from 1.59 to 1.30 W m−2. Although the results show the importance of considering subgrid variability in the treatment of autoconversion, representing several processes in a self-consistent subgrid framework is emphasized. This paper provides direct evidence that omitting subgrid variability in cloud microphysics significantly contributes to the apparently chronic overestimation of the aerosol indirect effect by climate models, as compared to satellite-based estimates.


2009 ◽  
Vol 9 (21) ◽  
pp. 8493-8501 ◽  
Author(s):  
J. Quaas ◽  
O. Boucher ◽  
A. Jones ◽  
G. P. Weedon ◽  
J. Kieser ◽  
...  

Abstract. A weekly cycle in aerosol pollution and some meteorological quantities is observed over Europe. In the present study we exploit this effect to analyse aerosol-cloud-radiation interactions. A weekly cycle is imposed on anthropogenic emissions in two general circulation models that include parameterizations of aerosol processes and cloud microphysics. It is found that the simulated weekly cycles in sulfur dioxide, sulfate, and aerosol optical depth in both models agree reasonably well with those observed indicating model skill in simulating the aerosol cycle. A distinct weekly cycle in cloud droplet number concentration is demonstrated in both observations and models. For other variables, such as cloud liquid water path, cloud cover, top-of-the-atmosphere radiation fluxes, precipitation, and surface temperature, large variability and contradictory results between observations, model simulations, and model control simulations without a weekly cycle in emissions prevent us from reaching any firm conclusions about the potential aerosol impact on meteorology or the realism of the modelled second aerosol indirect effects.


Author(s):  
Ram L. Ray ◽  
Maurizio Lazzari ◽  
Tolulope Olutimehin

Landslide is one of the costliest and fatal geological hazards, threatening and influencing the socioeconomic conditions in many countries globally. Remote sensing approaches are widely used in landslide studies. Landslide threats can also be investigated through slope stability model, susceptibility mapping, hazard assessment, risk analysis, and other methods. Although it is possible to conduct landslide studies using in-situ observation, it is time-consuming, expensive, and sometimes challenging to collect data at inaccessible terrains. Remote sensing data can be used in landslide monitoring, mapping, hazard prediction and assessment, and other investigations. The primary goal of this chapter is to review the existing remote sensing approaches and techniques used to study landslides and explore the possibilities of potential remote sensing tools that can effectively be used in landslide studies in the future. This chapter also provides critical and comprehensive reviews of landslide studies focus¬ing on the role played by remote sensing data and approaches in landslide hazard assessment. Further, the reviews discuss the application of remotely sensed products for landslide detection, mapping, prediction, and evaluation around the world. This systematic review may contribute to better understanding the extensive use of remotely sensed data and spatial analysis techniques to conduct landslide studies at a range of scales.


2017 ◽  
Vol 17 (3) ◽  
pp. 1901-1929 ◽  
Author(s):  
Claudia Di Biagio ◽  
Paola Formenti ◽  
Yves Balkanski ◽  
Lorenzo Caponi ◽  
Mathieu Cazaunau ◽  
...  

Abstract. Modeling the interaction of dust with long-wave (LW) radiation is still a challenge because of the scarcity of information on the complex refractive index of dust from different source regions. In particular, little is known about the variability of the refractive index as a function of the dust mineralogical composition, which depends on the specific emission source, and its size distribution, which is modified during transport. As a consequence, to date, climate models and remote sensing retrievals generally use a spatially invariant and time-constant value for the dust LW refractive index. In this paper, the variability of the mineral dust LW refractive index as a function of its mineralogical composition and size distribution is explored by in situ measurements in a large smog chamber. Mineral dust aerosols were generated from 19 natural soils from 8 regions: northern Africa, the Sahel, eastern Africa and the Middle East, eastern Asia, North and South America, southern Africa, and Australia. Soil samples were selected from a total of 137 available samples in order to represent the diversity of sources from arid and semi-arid areas worldwide and to account for the heterogeneity of the soil composition at the global scale. Aerosol samples generated from soils were re-suspended in the chamber, where their LW extinction spectra (3–15 µm), size distribution, and mineralogical composition were measured. The generated aerosol exhibits a realistic size distribution and mineralogy, including both the sub- and super-micron fractions, and represents in typical atmospheric proportions the main LW-active minerals, such as clays, quartz, and calcite. The complex refractive index of the aerosol is obtained by an optical inversion based upon the measured extinction spectrum and size distribution. Results from the present study show that the imaginary LW refractive index (k) of dust varies greatly both in magnitude and spectral shape from sample to sample, reflecting the differences in particle composition. In the 3–15 µm spectral range, k is between ∼ 0.001 and 0.92. The strength of the dust absorption at ∼ 7 and 11.4 µm depends on the amount of calcite within the samples, while the absorption between 8 and 14 µm is determined by the relative abundance of quartz and clays. The imaginary part (k) is observed to vary both from region to region and for varying sources within the same region. Conversely, for the real part (n), which is in the range 0.84–1.94, values are observed to agree for all dust samples across most of the spectrum within the error bars. This implies that while a constant n can be probably assumed for dust from different sources, a varying k should be used both at the global and the regional scale. A linear relationship between the magnitude of the imaginary refractive index at 7.0, 9.2, and 11.4 µm and the mass concentration of calcite and quartz absorbing at these wavelengths was found. We suggest that this may lead to predictive rules to estimate the LW refractive index of dust in specific bands based on an assumed or predicted mineralogical composition, or conversely, to estimate the dust composition from measurements of the LW extinction at specific wavebands. Based on the results of the present study, we recommend that climate models and remote sensing instruments operating at infrared wavelengths, such as IASI (infrared atmospheric sounder interferometer), use regionally dependent refractive indices rather than generic values. Our observations also suggest that the refractive index of dust in the LW does not change as a result of the loss of coarse particles by gravitational settling, so that constant values of n and k could be assumed close to sources and following transport. The whole dataset of the dust complex refractive indices presented in this paper is made available to the scientific community in the Supplement.


Sign in / Sign up

Export Citation Format

Share Document