scholarly journals European summer surface ozone 1990–2100

2012 ◽  
Vol 12 (3) ◽  
pp. 7705-7726 ◽  
Author(s):  
J. Langner ◽  
M. Engardt ◽  
C. Andersson

Abstract. The impact of climate change and changes in ozone precursor emissions on summer surface ozone in Europe were studied using a regional CTM over the period 1990 to 2100. Two different climate simulations under the SRES A1B scenario together with ozone precursor emission changes from the RCP4.5 scenario were used as model input. In southern Europe regional climate change leads to increasing surface ozone concentrations during April–September, but projected emission reductions in Europe have a stronger effect, resulting in net reductions of surface ozone concentrations. In northern Europe regional climate change decreases surface O3 and reduced emissions acts to further strengthen this trend also when including increasing hemispheric background concentrations, although on the British Isles the combined effect is an increase. Due to substantial decadal variability in the simulations it is important to study averages over sufficiently long time periods in order to be able to extract robust signals of climate change impacts on surface O3 concentrations.

2012 ◽  
Vol 12 (21) ◽  
pp. 10097-10105 ◽  
Author(s):  
J. Langner ◽  
M. Engardt ◽  
C. Andersson

Abstract. The impact of climate change and changes in ozone precursor emission on summer surface ozone in Europe was studied using a regional CTM over the period 1990 to 2100. Two different climate simulations under the SRES A1B scenario together with ozone precursor emission changes from the RCP4.5 scenario were used as model input. In southern Europe regional climate change leads to increasing surface ozone concentrations during April–September, but projected emission reductions in Europe have a stronger effect, resulting in net reductions of surface ozone concentrations. In northern Europe regional climate change decreases surface O3 and reduced European emissions acts to further strengthen this trend also when including increasing hemispheric background concentrations. The European O3 precursor emission reductions in RCP4.5 are substantial and it remains to be seen if these reductions can be achieved. There is substantial decadal variability in the simulations forced by climate variability which is important to consider when looking at changes in surface O3 concentrations, especially until the first half of the 21st century. In order to account for changes in background O3 future regional model studies should couple global (hemispheric) and regional CTMs forced by a consistent set of meteorological and precursor emission data.


2021 ◽  
Author(s):  
Tomas Halenka ◽  
Gaby Langendijk

<p>Cities play a fundamental role on climate at local to regional scales through modification of heat and moisture fluxes, as well as affecting local atmospheric chemistry and composition, alongside air-pollution dispersion. Vice versa, regional climate change impacts urban areas and is expected to increasingly affect cities and their citizens in the upcoming decades. Simultaneously, the share of the population living in urban areas is growing, and is projected to reach about 70% of the world population up to 2050. This is especially critical in connection to extreme events, for instance heat waves with extremely high temperatures exacerbated by the urban heat island effect, in particular during night-time, with significant consequences for human health.</p><p>Cities are becoming one of the most vulnerable environments under climate change. In 2013, the CORDEX community identified cities to be one of the prime scientific challenges. Therefore, we proposed this topic to become an activity at CORDEX platform, within the framework of so called flagship pilot studies, which was accepted and the FPS URB-RCC activity has been started in May this year.</p><p>Indeed, from the perspective of recent regional climate model developments with increasing resolution down to the city scale, proper parameterization of urban processes is starting to play an important role to understand local/regional climate change. The inclusion of the individual urban processes affecting energy balance and transport (i.e. heat, humidity, momentum fluxes) via special urban land-use parameterization of distinct local processes becomes vital to simulate the urban effects properly. This will enable improved assessment of climate change impacts in the cities and inform adaptation and/or mitigation options by urban decision-makers, as well as adequately prepare for climate related risks (e.g. heat waves, smog conditions etc.).</p><p>The main goal of this FPS is to understand the effect of urban areas on the regional climate, as well as the impact of regional climate change on cities, with the help of coordinated experiments with urbanized RCMs. While the urban climate with all the complex processes has been studied for decades, there is a significant gap to incorporate this knowledge into RCMs. This FPS aims to bridge this gap, leading the way to include urban parameterization schemes as a standard component in RCM simulations, especially at  high resolutions.</p>


2017 ◽  
Vol 17 (6) ◽  
pp. 1563-1568 ◽  
Author(s):  
Christopher P. O. Reyer ◽  
Kanta Kumari Rigaud ◽  
Erick Fernandes ◽  
William Hare ◽  
Olivia Serdeczny ◽  
...  

2021 ◽  
Author(s):  
Moshe Gophen

AbstractPart of the Kinneret watershed, the Hula Valley, was modified from wetlands – shallow lake for agricultural cultivation. Enhancement of nutrient fluxes into Lake Kinneret was predicted. Therefore, a reclamation project was implemented and eco-tourism partly replaced agriculture. Since the mid-1980s, regional climate change has been documented. Statistical evaluation of long-term records of TP (Total Phosphorus) concentrations in headwaters and potential resources in the Hula Valley was carried out to identify efficient management design targets. Significant correlation between major headwater river discharge and TP concentration was indicated, whilst the impact of external fertilizer loads and 50,000 winter migratory cranes was probably negligible. Nevertheless, confirmed severe bdamage to agricultural crops carried out by cranes led to their maximal deportation and optimization of their feeding policy. Consequently, the continuation of the present management is recommended.


2012 ◽  
Vol 13 (4) ◽  
pp. 797-811 ◽  
Author(s):  
Gabor Mezösi ◽  
Burghard C. Meyer ◽  
Wolfgang Loibl ◽  
Christoph Aubrecht ◽  
Peter Csorba ◽  
...  

2020 ◽  
Vol 12 (8) ◽  
pp. 3223 ◽  
Author(s):  
Soheil Fathi ◽  
Ravi S. Srinivasan ◽  
Charles J. Kibert ◽  
Ruth L. Steiner ◽  
Emre Demirezen

In developed countries, buildings are involved in almost 50% of total energy use and 30% of global annual greenhouse gas emissions. The operational energy needs of buildings are highly dependent on various building physical, operational, and functional characteristics, as well as meteorological and temporal properties. Besides physics-based energy modeling of buildings, Artificial Intelligence (AI) has the capability to provide faster and higher accuracy estimates, given buildings’ historic energy consumption data. Looking beyond individual building levels, forecasting building energy performance can help city and community managers have a better understanding of their future energy needs, and to plan for satisfying them more efficiently. Focusing at an urban scale, this research develops a campus energy use prediction tool for predicting the effects of long-term climate change on the energy performance of buildings using AI techniques. The tool comprises four steps: Data Collection, AI Development, Model Validation, and Model Implementation, and can predict the energy use of campus buildings with 90% accuracy. We have relied on energy use data of buildings situated in the University of Florida, Gainesville, Florida (FL). To study the impact of climate change, we have used climate properties of three future weather files of Gainesville, FL, developed by the North American Regional Climate Change Assessment Program (NARCCAP), represented based on their impact: median (year 2063), hottest (2057), and coldest (2041).


2012 ◽  
pp. 91-120 ◽  
Author(s):  
Andrew Clarke ◽  
David K. A. Barnes ◽  
Thomas J. Bracegirdle ◽  
Hugh W. Ducklow ◽  
John C. King ◽  
...  

2011 ◽  
Vol 116 (D22) ◽  
pp. n/a-n/a ◽  
Author(s):  
E. Katragkou ◽  
P. Zanis ◽  
I. Kioutsioukis ◽  
I. Tegoulias ◽  
D. Melas ◽  
...  

2010 ◽  
Vol 27 ◽  
pp. 57-64 ◽  
Author(s):  
M. Wegehenkel ◽  
U. Heinrich ◽  
H. Jochheim ◽  
K. C. Kersebaum ◽  
B. Röber

Abstract. Future climate changes might have some impacts on catchment hydrology. An assessment of such impacts on e.g. ground water recharge is required to derive adaptation strategies for future water resources management. The main objective of our study was an analysis of three different regional climate change scenarios for a catchment with an area of 2415 km2 located in the Northeastern German lowlands. These data sets consist of the STAR-scenario with a time period 1951–2055, the WettReg-scenario covering the period 1961–2100 and the grid based REMO-scenario for the time span 1950–2100. All three data sets are based on the SRES scenario A1B of the IPCC. In our analysis, we compared the meteorological data for the control period obtained from the regional climate change scenarios with corresponding data measured at meteorological stations in the catchment. The results of this analysis indicated, that there are high differences between the different regional climate change scenarios regarding the temporal dynamics and the amount of precipitation. In addition, we applied a water balance model using input data obtained from the different climate change scenarios and analyzed the impact of these different input data on the model output groundwater recharge. The results of our study indicated, that these regional climate change scenarios due to the uncertainties in the projections of precipitation show only a limited suitability for hydrologic impact analysis used for the establishment of future concrete water management procedures in their present state.


Sign in / Sign up

Export Citation Format

Share Document