scholarly journals The carbon emissions of Chinese cities

2012 ◽  
Vol 12 (3) ◽  
pp. 7985-8007 ◽  
Author(s):  
H. Wang ◽  
J. Bi ◽  
R. Zhang ◽  
M. Liu

Abstract. As increasing urbanization has become a national policy priority for economic growth in China, cities have become important players in efforts to reduce carbon emissions. However, their efforts have been hampered by the lack of specific and comparable carbon emission inventories. Comprehensive carbon emission inventories, which present both a relatively current snapshot and also show how emissions have changed over the past several years, of twelve Chinese cities were developed using bottom-up approach. Carbon emissions in most of Chinese cities rose along with economic growth from 2004 to 2008. Yet per capita carbon emissions varied between the highest and lowest emitting cities by a factor of nearly 7. Average per capita carbon emissions varied across sectors, including industrial energy consumption (64.3%), industrial processes (10.2%), transportation (10.6%), household energy consumption (8.0%), commercial energy consumption (4.3%) and waste processing (2.5%). The levels of per capita carbon emissions in China's cities were higher than we anticipated before comparing them with the average of global cities. This is mainly due to the major contribution of industry sector encompassing industrial energy consumption and industrial processes to the total carbon emissions of Chinese cities.

2012 ◽  
Vol 12 (14) ◽  
pp. 6197-6206 ◽  
Author(s):  
H. Wang ◽  
R. Zhang ◽  
M. Liu ◽  
J. Bi

Abstract. As increasing urbanization has become a national policy priority for economic growth in China, cities have become important players in efforts to reduce carbon emissions. However, their efforts have been hampered by the lack of specific and comparable carbon emission inventories. Comprehensive carbon emission inventories for twelve Chinese cities, which present both a relatively current snapshot and also show how emissions have changed over the past several years, were developed using a bottom-up approach. Carbon emissions in most Chinese cities rose along with economic growth from 2004 to 2008. Yet per capita carbon emissions varied between the highest and lowest emitting cities by a factor of nearly 7. Average contributions of sectors to per capita emissions for all Chinese cities were 65.1% for industrial energy consumption, 10.1% for industrial processes, 10.4% for transportation, 7.7% for household energy consumption, 4.2% for commercial energy consumption and 2.5% for waste processing. However, these shares are characterized by considerable variability due to city-specific factors. The levels of per capita carbon emissions in China's cities were higher than we anticipated before comparing them with the average of ten cities in other parts of the world. This is mainly due to the major contribution of the industry sector in Chinese cities.


2013 ◽  
Vol 361-363 ◽  
pp. 123-126
Author(s):  
Zi Jun Li ◽  
Can Juan Gong

Industry, construction and transportation are the key fields of carbon emission. Based on the reality of Dongying City, and combined with relevant statistical data, carbon emissions in industry, construction and transportation of Dongying City are accounted objectively. The results show that carbon emission in key fields of Dongying City has a fast increasing tendency from 2005 to 2009. Among which, carbon emissions of industry account for the largest proportion with the five-year average of 82.04%, followed by the construction and transportation, with the five-year average of 12.77% and 5.19% respectively. Therefore, adjusting and optimizing industrial energy consumption in the key fields is crucial to carbon emission reduction of Dongying City. This has an important significance for Dongying City to achieve energy conservation, emission reduction and build a low-carbon ecological city.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1932-1936
Author(s):  
Sun Xi Xiao ◽  
Lin Wu

Energy consumption is the major source of industrial carbon emissions. Energy consumption carbon emission factor method and LMDI (Logarithmic Mean Divisia Index) method was used to analyze the carbon emission evolution of industrial economy energy consumption in Jiangsu Province with collected data on industrial energy consumption in 1995-2012. Results showed that Jiangsu province economic industrial carbon emissions keep increasing in 1995-2012 years. The results of carbon emission increase analysis of energy consumption structure effects, industrial energy consumption intensity effects and output scale effects in 1999-2012 showed that energy consumption intensity effect has the maximum contribution to carbon emissions in industrial carbon emissions Jiangsu Province. Therefore, the main way to control carbon emissions of industrial energy consumption in Jiangsu Province is reasonably control the growth of energy consumption.


2012 ◽  
Vol 164 ◽  
pp. 302-305
Author(s):  
Zhuo Ma ◽  
Xiao Gang He ◽  
Xun Zhou Tong ◽  
Hai Yan Duan ◽  
Xian En Wang ◽  
...  

To make great efforts for energy saving and promote low-carbon transition of industrial development pattern have been the most crucial tasks for Changchun industrial developmen. Using Logarithmic Mean Divisia Index (LMDI) mode decomposes the carbon emission influencing factors of the industrial department in Changchun, and study on the effects of factors on the carbon emissions of industrial energy consumption. The result shows that the major factors for carbon emissions of industrial energy consumption in Changchun are economic development, the population size and the industrialization rate, and the key factors for the carbon emission changes in industrial department of Changchun are the energy consumption structure and the energy intensity.


2013 ◽  
Vol 869-870 ◽  
pp. 746-749
Author(s):  
Tian Tian Jin ◽  
Jin Suo Zhang

Abstract. Based on ARDL model, this paper discussed the relationship of energy consumption, carbon emission and economic growth.The results indicated that the key to reduce carbon emissions lies in reducing energy consumption, optimizing energy structure.


2014 ◽  
Vol 675-677 ◽  
pp. 1865-1868 ◽  
Author(s):  
Han Li ◽  
Lin Wu

LMDI (Logarithmic Mean Divisia Index) was used to estimates the carbon emission of industrial energy consumption in Hunan Province with collected data on industrial energy consumption in 2000-2012. The results showed that carbon emissions of industrial energy consumption present the overall upward trend in Hubei Province, where the carbon emissions of coal consumption are the main factors, this shows that the industry of Hubei is extensive development withhigh energy consumption. In addition, industrial carbon intensity has a fluctuated downward trend in 2011-2012; this shows that Hubei province has made ​​a positive change on control carbon emissions of energy consumption.


2020 ◽  
pp. 713-727
Author(s):  
Xiaohui Wang, Xin Zhang

The study on the relationship between investment in environmental governance, carbon emission and economic growth is helpful for the relevant government departments to coordinate the influence among them when formulating the policies of reducing emission and conserving energy, so as to take the comparative advantages of various factors and promote the benign interaction between economic development and environmental governance. In this paper, the data of Per capita GDP, per capita investment in environmental governance and per capita CARBON dioxide emissions in China from 2000 to 2019 are selected as the research basis, and variables are studied by means of Granger causality and impulse response function. As shown in the results, there is a single Granger relationship between investment in environmental governance and carbon emissions, that is, the increase of investment in environmental governance leads to the reduction of carbon emissions. The influence of economic growth on environmental governance investment is small, but in the long term, it can restrain the growth of carbon emissions. Investment in environmental governance can promote economic growth and stimulate a reduction in the emissions in the short term; Economic growth was hindered by the emissions in the long term and fail to stimulate increased investment in environmental governance. Based on these findings, this paper proposes policy Suggestions for optimizing the structure of environmental governance investment, improving the carbon emission monitoring and response mechanism, and strengthening the technological level of energy conservation and emission reduction.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253464
Author(s):  
M. S. Karimi ◽  
S. Ahmad ◽  
H. Karamelikli ◽  
D. T. Dinç ◽  
Y. A. Khan ◽  
...  

This study examines the relationship between economic growth, renewable energy consumption, and carbon emissions in Iran between 1975–2017, and the bounds testing approach to cointegration and the asymmetric method was used in this study. The results reveal that in the long run increase in renewable energy consumption and CO2 emissions causes an increase in real GDP per capita. Meanwhile, the decrease in renewable energy has the same effect, but GDP per capita reacts more strongly to the rise in renewable energy than the decline. Besides, in the long run, a reduction of CO2 emissions has an insignificant impact on GDP per capita. Furthermore, the results from asymmetric tests suggest that reducing CO2 emissions and renewable energy consumption do not have an essential role in decreasing growth in the short run. In contrast, an increase in renewable energy consumption and CO2 emissions do contribute to boosting the growth. These results may be attributable to the less renewable energy in the energy portfolio of Iran. Additionally, the coefficients on capital and labor are statistically significant, and we discuss the economic implications of the results and propose specific policy recommendations.


2021 ◽  
Vol 9 ◽  
Author(s):  
Salim Khan ◽  
Wang Yahong

Several researchers have studied the relationship between poverty and environmental degradation, as these concerns are remained at top priority in achieving Sustainable Development Goals (SDGs). However, the symmetric and asymmetric impact of poverty and income inequality along with population and economic growth on carbon emissions (CO2e) has not been studied in the case of Pakistan. For this purpose, the short and long-run impact of poverty, income inequality, population, and GDP per capita on CO2e investigated by applying the Autoregressive Distributive Lag (ARDL) along with Non-linear Autoregressive Distributive Lag (NARDL) co-integration approach in the context of Pakistan for period 1971–2015. The symmetric results of the current study show poverty and population density along with GDP per capita increase carbon emissions in both the short and long-run, while income inequality has no impact on carbon emissions in the short-run. While in the long-run the symmetric results show that income inequality weakens environmental degradation in terms of carbon emissions. The analysis of NARDL also supports the results obtained from ARDL and suggests a positive effect of poverty, population, and economic growth on carbon emission in Pakistan. The empirical findings of the current study provide policy implications in light of the United Nation's SDGs for the development of Pakistan.


Sign in / Sign up

Export Citation Format

Share Document