scholarly journals BVOC-aerosol-climate interactions in the global aerosol-climate model ECHAM5.5-HAM2

2012 ◽  
Vol 12 (4) ◽  
pp. 9195-9246 ◽  
Author(s):  
R. Makkonen ◽  
A. Asmi ◽  
V.-M. Kerminen ◽  
M. Boy ◽  
A. Arneth ◽  
...  

Abstract. The biosphere emits volatile organic compounds (BVOCs) which, after oxidation in the atmosphere, can partition on the existing aerosol population or even form new particles. The large quantities emitted provide means for a large potential impact on both aerosol direct and indirect effects. Biogenic responses to atmospheric temperature change can establish feedbacks even in rather short timescales. However, due to the complexity of organic aerosol partitioning, even the sign of these feedbacks is of large uncertainty. We use the global aerosol-climate model ECHAM5.5-HAM2 to explore the effect of BVOC emissions on new particle formation, clouds and climate. Two BVOC emission models, MEGAN2 and LPJ-GUESS, are used to estimate the effect of BVOC-aerosol-climate coupling. The change of shortwave cloud forcing from year 1750 to 2000 ranges from −1.4 to −1.8 W m−2 with 5 different nucleation mechanisms. We show that the change in shortwave cloud forcing from the year 2000 to 2100 ranges from 1.0 to 1.5 W m−2. Although increasing future BVOC emissions provide 3–5% additional CCN, the effect on the cloud albedo change is modest. Due to simulated decreases in future cloud cover, the increased CCN concentrations from BVOCs can not provide significant additional cooling in the future.

2012 ◽  
Vol 12 (21) ◽  
pp. 10077-10096 ◽  
Author(s):  
R. Makkonen ◽  
A. Asmi ◽  
V.-M. Kerminen ◽  
M. Boy ◽  
A. Arneth ◽  
...  

Abstract. The biosphere emits volatile organic compounds (BVOCs) which, after oxidation in the atmosphere, can partition on the existing aerosol population or even form new particles. The large quantities emitted provide means for a large potential impact on both aerosol direct and indirect effects. Biogenic responses to atmospheric temperature change can establish feedbacks even in rather short timescales. However, due to the complexity of organic aerosol partitioning, even the sign of these feedbacks is of large uncertainty. We use the global aerosol-climate model ECHAM5.5-HAM2 to explore the effect of BVOC emissions on new particle formation, clouds and climate. Two BVOC emission models, MEGAN2 and LPJ-GUESS, are used. MEGAN2 shows a 25% increase while LPJ-GUESS shows a slight decrease in global BVOC emission between years 2000 and 2100. The change of shortwave cloud forcing from year 1750 to 2000 ranges from −1.4 to −1.8 W m−2 with 5 different nucleation mechanisms. We show that the change in shortwave cloud forcing from the year 2000 to 2100 ranges from 1.0 to 1.5 W m−2. Although increasing future BVOC emissions provide 3–5% additional CCN, the effect on the cloud albedo change is modest. Due to simulated decreases in future cloud cover, the increased CCN concentrations from BVOCs can not provide significant additional cooling in the future.


Author(s):  
Alf KirkevÃ¥g ◽  
Trond Iversen ◽  
Øyvind Seland ◽  
Jens Boldingh Debernard ◽  
Trude Storelvmo ◽  
...  

2019 ◽  
Vol 116 (14) ◽  
pp. 6641-6646 ◽  
Author(s):  
Havala O. T. Pye ◽  
Emma L. D’Ambro ◽  
Ben H. Lee ◽  
Siegfried Schobesberger ◽  
Masayuki Takeuchi ◽  
...  

Atmospheric oxidation of natural and anthropogenic volatile organic compounds (VOCs) leads to secondary organic aerosol (SOA), which constitutes a major and often dominant component of atmospheric fine particulate matter (PM2.5). Recent work demonstrates that rapid autoxidation of organic peroxy radicals (RO2) formed during VOC oxidation results in highly oxygenated organic molecules (HOM) that efficiently form SOA. As NOxemissions decrease, the chemical regime of the atmosphere changes to one in which RO2autoxidation becomes increasingly important, potentially increasing PM2.5, while oxidant availability driving RO2formation rates simultaneously declines, possibly slowing regional PM2.5formation. Using a suite of in situ aircraft observations and laboratory studies of HOM, together with a detailed molecular mechanism, we show that although autoxidation in an archetypal biogenic VOC system becomes more competitive as NOxdecreases, absolute HOM production rates decrease due to oxidant reductions, leading to an overall positive coupling between anthropogenic NOxand localized biogenic SOA from autoxidation. This effect is observed in the Atlanta, Georgia, urban plume where HOM is enhanced in the presence of elevated NO, and predictions for Guangzhou, China, where increasing HOM-RO2production coincides with increases in NO from 1990 to 2010. These results suggest added benefits to PM2.5abatement strategies come with NOxemission reductions and have implications for aerosol–climate interactions due to changes in global SOA resulting from NOxinteractions since the preindustrial era.


2005 ◽  
Vol 5 (4) ◽  
pp. 1125-1156 ◽  
Author(s):  
P. Stier ◽  
J. Feichter ◽  
S. Kinne ◽  
S. Kloster ◽  
E. Vignati ◽  
...  

Abstract. The aerosol-climate modelling system ECHAM5-HAM is introduced. It is based on a flexible microphysical approach and, as the number of externally imposed parameters is minimised, allows the application in a wide range of climate regimes. ECHAM5-HAM predicts the evolution of an ensemble of microphysically interacting internally- and externally-mixed aerosol populations as well as their size-distribution and composition. The size-distribution is represented by a superposition of log-normal modes. In the current setup, the major global aerosol compounds sulfate (SU), black carbon (BC), particulate organic matter (POM), sea salt (SS), and mineral dust (DU) are included. The simulated global annual mean aerosol burdens (lifetimes) for the year 2000 are for SU: 0.80 Tg(S) (3.9 days), for BC: 0.11 Tg (5.4 days), for POM: 0.99 Tg (5.4 days), for SS: 10.5 Tg (0.8 days), and for DU: 8.28 Tg (4.6 days). An extensive evaluation with in-situ and remote sensing measurements underscores that the model results are generally in good agreement with observations of the global aerosol system. The simulated global annual mean aerosol optical depth (AOD) is with 0.14 in excellent agreement with an estimate derived from AERONET measurements (0.14) and a composite derived from MODIS-MISR satellite retrievals (0.16). Regionally, the deviations are not negligible. However, the main patterns of AOD attributable to anthropogenic activity are reproduced.


2014 ◽  
Vol 31 (4) ◽  
pp. 808-825 ◽  
Author(s):  
Wenhui Wang ◽  
Cheng-Zhi Zou

Abstract The Advanced Microwave Sounding Unit-A (AMSU-A, 1998–present) not only continues but surpasses the Microwave Sounding Unit’s (MSU, 1978–2006) capability in atmospheric temperature observation. It provides valuable satellite measurements for higher vertical resolution and long-term climate change research and trend monitoring. This study presented methodologies for generating 11 channels of AMSU-A-only atmospheric temperature data records from the lower troposphere to the top of the stratosphere. The recalibrated AMSU-A level 1c radiances recently developed by the Center for Satellite Applications and Research group were used. The recalibrated radiances were adjusted to a consistent sensor incidence angle (nadir), channel frequencies (prelaunch-specified central frequencies), and observation time (local solar noon time). Radiative transfer simulations were used to correct the sensor incidence angle effect and the National Oceanic and Atmospheric Administration-15 (NOAA-15) channel 6 frequency shift. Multiyear averaged diurnal/semidiurnal anomaly climatologies from climate reanalysis as well as climate model simulations were used to adjust satellite observations to local solar noon time. Adjusted AMSU-A measurements from six satellites were carefully quality controlled and merged to generate 13+ years (1998–2011) of a monthly 2.5° × 2.5° gridded atmospheric temperature data record. Major trend features in the AMSU-A-only atmospheric temperature time series, including global mean temperature trends and spatial trend patterns, were summarized.


2017 ◽  
Author(s):  
Pakawat Phalitnonkiat ◽  
Wenxiu Sun ◽  
Mircea D. Grigoriu ◽  
Peter G. M. Hess ◽  
Gennady Samorodnitsky ◽  
...  

Abstract. The co-occurrence of heat waves and pollution events and the resulting high mortality rates emphasizes the importance of the co-occurrence of pollution and temperature extremes. Through the use of extreme value theory and other statistical methods ozone and temperature extremes and their joint occurrence are analyzed over the United States during the summer months (JJA) using Clean Air Status and Trends Network (CASTNET) measurement data and simulations of the present and future climate and chemistry in the Community Earth System Model (CESM1) CAM4-chem. Three simulations using CAM4-chem were analyzed: the Chemistry Climate Model Initiative (CCMI) reference experiment using specified dynamics (REFC1SD) between 1992–2010, a 25-year present-day simulation branched off the CCMI REFC2 simulation in the year 2000 and a 25-year future simulation branched off the CCMI REFC2 simulation in 2100. The latter two simulations differed in their concentration of carbon dioxide (representative of the years 2000 and 2100) but were otherwise identical. A new metric is developed to measure the joint extremal dependence of ozone and temperature by evaluating the spectral dependence of their extremes. Two regions of the U.S. give the strongest measured extreme dependence of ozone and temperature: the northeast and the southeast. The simulations do not capture the relationship between temperature and ozone over the northeast but do simulate a strong dependence of ozone on extreme temperatures over the southeast. In general, the simulations of ozone and temperature do not capture the width of the measured temperature and ozone distributions. While on average the future increase in the 90th percentile temperature and the 90th percentile ozone slightly exceed the mean increase over the continental U.S., in many regions the width of the temperature and ozone distributions decrease. The location of future increases in the tails of the ozone distribution are weakly related to those of temperature with a correlation of 0.3.


2017 ◽  
Author(s):  
Filippo Xausa ◽  
Pauli Paasonen ◽  
Risto Makkonen ◽  
Mikhail Arshinov ◽  
Aijun Ding ◽  
...  

Abstract. Climate models are important tools that are used for generating climate change projections, in which aerosol-climate interactions are one of the main sources of uncertainties. In order to quantify aerosol-radiation and aerosol-cloud interactions, detailed input of anthropogenic aerosol number emissions is necessary. However, the anthropogenic aerosol number emissions are usually converted from the corresponding mass emissions in precompiled emission inventories through a very simplistic method depending uniquely on chemical composition, particle size and density, which are defined for a few very wide main source sectors. In this work, the anthropogenic particle number emissions converted from the AeroCom mass in the ECHAM-HAM climate model were replaced with the recently-formulated number emissions from the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS)-model, where the emission number size distributions vary, for example, with respect to the fuel and technology. A special attention in our analysis was put on accumulation mode particles (particle diameter dp > 100 nm) because of (i) their capability of acting as cloud condensation nuclei (CCN), thus forming cloud droplets and affecting Earth's radiation budget, and (ii) their dominant role in forming the coagulation sink and thus limiting the concentration of sub-100 nanometers particles. In addition, the estimates of anthropogenic CCN formation, and thus the forcing from aerosol-climate interactions are expected to be affected. Analysis of global particle number concentrations and size distributions reveal that GAINS implementation increases CCN concentration compared with AeroCom, with regional enhancement factors reaching values as high as 10. A comparison between modeled and observed concentrations shows that the increase in number concentration for accumulation mode particle agrees well with measurements, but it leads to a consistent underestimation of both nucleation mode and Aitken mode (dp > 100 nm) particle number concentrations. This suggests that revisions are needed in the new particle formation and growth schemes currently applied in global modeling frameworks.


2011 ◽  
Vol 11 (9) ◽  
pp. 26477-26520
Author(s):  
Y. Peng ◽  
K. von Salzen ◽  
J. Li

Abstract. A new size-resolved dust scheme based on the numerical method of piecewise log-normal approximation (PLA) was developed and implemented in the fourth generation of the Canadian Atmospheric Global Climate Model with the PLA Aerosol Module (CanAM4-PAM). The total simulated annual mean dust burden is 37.8 mg m−2 for year 2000, which is consistent with estimates from other models. Results from simulations are compared with multiple surface measurements near and away from dust source regions, validating the generation, transport and deposition of dust in the model. Most discrepancies between model results and surface measurements are due to unresolved aerosol processes. Radiative properties of dust aerosol are derived from approximated parameters in two size modes using Mie theory. The simulated aerosol optical depth (AOD) is compared with several satellite observations and shows good agreements. The model yields a dust AOD of 0.042 and total AOD of 0.126 for the year 2000. The simulated aerosol direct radiative forcings (ADRF) of dust and total aerosol over ocean are −1.24 W m−2 and −4.76 W m−2 respectively, which show good consistency with satellite estimates for the year 2001.


Author(s):  
S. A. Nta ◽  
M. J. Ayotamuno ◽  
A. H. Igoni ◽  
R. N. Okparanma

This paper presents potential impact on health of emission from landfill site on Uyo village road, Uyo local government area of Akwa Ibom State, Nigeria. Three sampling points were assessed for particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), sulphur dioxide (SO2), carbon monoxide (CO), hydrogen sulphide H2S, ammonia (NH3), total volatile organic carbon (TVOC) and hydrogen cyanide (HCN) using highly sensitive digital portable meters. The data obtained were expressed in terms of an air quality index. Air quality index indicates that the ambient air can be described as unhealthy for sensitive groups for NO2, unhealthy for SO2 and PM2.5 and moderate for CO, respectively. H2S, NH3, TVOC, HCN, PM10 were not indicated in USEPA air quality standards. It recommended that stringent and proper landfill emissions management together with appropriate burning of wastes should be considered in the study area to ease the risks associated with these pollutants on public health.


2016 ◽  
Vol 16 (24) ◽  
pp. 15653-15664 ◽  
Author(s):  
Lamia Ammoura ◽  
Irène Xueref-Remy ◽  
Felix Vogel ◽  
Valérie Gros ◽  
Alexia Baudic ◽  
...  

Abstract. We propose an approach to estimate urban emission ratios that takes advantage of the enhanced local urban signal in the atmosphere at low wind speed. We apply it to estimate monthly ratios between CO2, CO and some VOCs from several atmospheric concentration measurement datasets acquired in the centre of Paris between 2010 and 2014. We find that this approach is not very sensitive to the regional background level definition and that, in the case of Paris, it samples all days (weekdays and weekends) and all hours of the day evenly. A large seasonal variability of the ΔCO ∕ ΔCO2 ratio in Paris is shown, with a difference of around 60 % between the extreme values and a strong anti-correlation (r2 = 0.75) with atmospheric temperature. The comparison of the ratios obtained for two short measurement campaigns conducted in two different districts and two different periods (autumn and winter) shows differences ranging from −120 to +63 %. A comparison with a highly resolved regional emission inventory suggests some spatial variations of the ratio within the city.


Sign in / Sign up

Export Citation Format

Share Document