scholarly journals Multiday production of condensing organic aerosol mass in urban and forest outflow

2014 ◽  
Vol 14 (12) ◽  
pp. 17999-18047 ◽  
Author(s):  
J. Lee-Taylor ◽  
A. Hodzic ◽  
S. Madronich ◽  
B. Aumont ◽  
M. Camredon ◽  
...  

Abstract. Secondary organic aerosol (SOA) production in air masses containing either anthropogenic or biogenic (terpene-dominated) emissions is investigated using the explicit gas-phase chemical mechanism generator GECKO-A. Simulations show several-fold increases in SOA mass continuing for several days in the urban outflow, even as the initial air parcel is diluted into the regional atmosphere. The SOA mass increase in the forest outflow is more modest (∼50%) and of shorter duration (1–2 days). The production in the urban outflow stems from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase, and can be attributed to multigenerational reaction products of both aromatics and alkanes. In particular we find large contributions from substituted maleic anhydrides and multi-substituted peroxide-bicyclic alkenes. The results show that the predicted production is a robust feature of our model even under changing atmospheric conditions, and contradict the notion that SOA undergoes little mass production beyond a short initial formation period. The results imply that anthropogenic aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over an extremely wide region, and that SOA measurements near precursor sources may routinely underestimate this influence.

2015 ◽  
Vol 15 (2) ◽  
pp. 595-615 ◽  
Author(s):  
J. Lee-Taylor ◽  
A. Hodzic ◽  
S. Madronich ◽  
B. Aumont ◽  
M. Camredon ◽  
...  

Abstract. Secondary organic aerosol (SOA) production in air masses containing either anthropogenic or biogenic (terpene-dominated) emissions is investigated using the explicit gas-phase chemical mechanism generator GECKO-A. Simulations show several-fold increases in SOA mass continuing for multiple days in the urban outflow, even as the initial air parcel is diluted into the regional atmosphere. The SOA mass increase in the forest outflow is more modest (~50%) and of shorter duration (1–2 days). The multiday production in the urban outflow stems from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase, and can be attributed to multigenerational reaction products of both aromatics and alkanes, especially those with relatively low carbon numbers (C4–15). In particular we find large contributions from substituted maleic anhydrides and multi-substituted peroxide-bicyclic alkenes. The results show that the predicted production is a robust feature of our model even under changing atmospheric conditions and different vapor pressure schemes, and contradict the notion that SOA undergoes little mass production beyond a short initial formation period. The results imply that anthropogenic aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over an extremely wide region, and that SOA measurements near precursor sources may routinely underestimate this influence.


2013 ◽  
Vol 13 (10) ◽  
pp. 25969-25999 ◽  
Author(s):  
A. Bougiatioti ◽  
I. Stavroulas ◽  
E. Kostenidou ◽  
P. Zarmpas ◽  
C. Theodosi ◽  
...  

Abstract. The aerosol chemical composition in air masses affected by wildfires from the Greek islands of Chios, Euboea and Andros, the Dalmatian Coast and Sicily, during late summer of 2012 was characterized at the remote background site of Finokalia, Crete. Air masses were transported several hundreds of kilometers, arriving at the measurement station after approximately half a day of transport, mostly during night-time. The chemical composition of the particulate matter was studied by different high temporal resolution instruments, including an Aerosol Chemical Speciation Monitor (ACSM) and a seven-wavelength aethalometer. Despite the large distance from emission and long atmospheric processing, a clear biomass burning organic aerosol (BBOA) profile containing characteristic markers is derived from BC measurements and Positive Matrix Factorization (PMF) analysis of the ACSM mass spectra. The ratio of fresh to aged BBOA decreases with increasing atmospheric processing time and BBOA components appear to be converted to oxygenated organic aerosol (OOA). Given that the smoke was mainly transported overnight, it appears that the processing can take place in the dark. These results show that a significant fraction of the BBOA loses its characteristic AMS signature and is transformed to OOA in less than a day. This implies that biomass burning can contribute almost half of the organic aerosol mass in the area during summertime.


2010 ◽  
Vol 10 (1) ◽  
pp. 1901-1938 ◽  
Author(s):  
C. D. Cappa ◽  
J. L. Jimenez

Abstract. Measurements of the sensitivity of organic aerosol (OA, and its components) mass to changes in temperature were recently reported by Huffman et al. (2009) using a tandem thermodenuder-aerosol mass spectrometer (TD-AMS) system in Mexico City and the Los Angeles area. Here, we use these measurements to derive quantitative estimates of aerosol volatility within the framework of absorptive partitioning theory using a kinetic model of aerosol evaporation in the TD. OA volatility distributions (or "basis-sets") are determined using several assumptions as to the enthalpy of vaporization (ΔHvap). We present two definitions of "non-volatile OA," one being a global and one a local definition. Based on these definitions, our analysis indicates that a substantial fraction of the organic aerosol is comprised of non-volatile components that will not evaporate under any atmospheric conditions, on the order of 50–80% when the most realistic ΔHvap assumptions are considered. The sensitivity of the total OA mass to dilution and ambient changes in temperature has been assessed for the various ΔHvap assumptions. The temperature sensitivity is relatively independent of the particular ΔHvap assumptions whereas dilution sensitivity is found to be greatest for the low (ΔHvap = 50 kJ/mol) and lowest for the high (ΔHvap = 150 kJ/mol) assumptions. This difference arises from the high ΔHvap assumptions yielding volatility distributions with a greater fraction of non-volatile material than the low ΔHvap assumptions. If the observations are fit using a 1 or 2-component model the sensitivity of the OA to dilution is unrealistically high. An empirical method introduced by Faulhaber et al. (2009) has also been used to independently estimate a volatility distribution for the ambient OA and is found to give results consistent with the high and variable ΔHvap assumptions. Our results also show that the amount of semivolatile gas-phase organics in equilibrium with the OA could range from ~20% to 400% of the OA mass, with smaller values generally corresponding to the higher ΔHvap assumptions. The volatility of various OA components determined from factor analysis of AMS spectra has also been assessed. In general, it is found that the fraction of non-volatile material follows the pattern: biomass burning OA < hydrocarbon-like OA < semivolatile oxygenated OA < low-volatility oxygenated OA. Correspondingly, the sensitivity to dilution and the estimated amount of semivolatile gas-phase material for the OA factors follows the reverse order. Primary OA has a substantial semivolatile fraction, in agreement with previous results, while the non-volatile fraction appears to be dominated by oxygenated OA produced by atmospheric aging. The overall OA volatility is thus controlled by the relative contribution of each aerosol type to the total OA burden. Finally, the model/measurement comparison appears to require OA having an evaporation coefficient (γe) substantially greater than 10−2; at this point it is not possible to place firmer constraints on γe based on the observations.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 927
Author(s):  
Inmaculada Colmenar ◽  
Pilar Martín ◽  
Beatriz Cabañas ◽  
Sagrario Salgado ◽  
Florentina Villanueva ◽  
...  

An experimental product study of the reactions of furfural with the main tropospheric oxidants (Cl, OH and NO3) has been carried out using a Fourier Transform Infrared spectrophotometer (FTIR) and a gas chromatograph–mass spectrometer with a time of flight detector (GC–TOFMS). The main gas-phase products detected were 5-chloro-2(5H)-furanone, maleic anhydride, 2-nitrofuran and CO. Molar yields were quantified for the detected products in these reactions, thus suggesting the existence of nongaseous products that could not be observed with the analytical techniques employed. The formation of Secondary Organic Aerosol (SOA) from the oxidation of furfural with Cl atoms, OH, NO3 and ozone was investigated in a smog chamber in the absence of inorganic seed aerosols. The experimental results show the formation of ultrafine particles (less than 1 µm in diameter) for all of the studied reactions except for the nitrate radical. Given their small size, these ultrafine particles (<1 µm) can easily penetrate into the respiratory tract and reach the alveolar region. These particles, therefore, have the potential to cause severe damage to the respiratory system. The aerosol yield obtained, Y, was low (<0.04) in all cases, which means that the aerosols generated from furfural, under atmospheric conditions, could have little impact.


2017 ◽  
Author(s):  
Tengyu Liu ◽  
Zijun Li ◽  
ManNin Chan ◽  
Chak K. Chan

Abstract. Cooking emissions can potentially contribute to secondary organic aerosol (SOA) but remain poorly understood. In this study, formation of SOA from gas-phase emissions of five heated vegetable oils (i.e. corn, canola, sunflower, peanut and olive oils) was investigated in a potential aerosol mass (PAM) chamber. Experiments were conducted at 19–20 ºC and 65–70 % RH. The characterization instruments included a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS). The efficiency of SOA production, in ascending order, was peanut oil, olive oil, canola oil, corn oil and sunflower oil. The major SOA precursors from heated cooking oils were related to the content of mono-unsaturated fat and omega-6 fatty acids in cooking oils. The average production rate of SOA, after aging at an OH exposure of 1.7 × 1011 molecules cm−3 s, was 1.35 ± 0.30 µg min−1, three orders of magnitude lower compared with emission rates of fine particulate matter (PM2.5) from heated cooking oils in previous studies. The mass spectra of cooking SOA highly resemble field-derived COA (cooking-related organic aerosol) in ambient air, with R2 ranging from 0.74 to 0.88, suggesting that COA might not be entirely primary in origin. The average carbon oxidation state (OSc) of SOA was −1.51–−0.81, falling in the range between ambient hydrocarbon-like organic aerosol (HOA) and semi-volatile oxygenated organic aerosol (SV-OOA), indicating that SOA in these experiments was lightly oxidized.


2015 ◽  
Vol 15 (6) ◽  
pp. 3063-3075 ◽  
Author(s):  
A. T. Lambe ◽  
P. S. Chhabra ◽  
T. B. Onasch ◽  
W. H. Brune ◽  
J. F. Hunter ◽  
...  

Abstract. We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 108 to 2.2 × 1010 molec cm−3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 106 to 2 × 107 molec cm−3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 1011 and 2 × 1011 molec cm−3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.


2015 ◽  
Vol 15 (14) ◽  
pp. 8077-8100 ◽  
Author(s):  
K. P. Wyche ◽  
P. S. Monks ◽  
K. L. Smallbone ◽  
J. F. Hamilton ◽  
M. R. Alfarra ◽  
...  

Abstract. Highly non-linear dynamical systems, such as those found in atmospheric chemistry, necessitate hierarchical approaches to both experiment and modelling in order to ultimately identify and achieve fundamental process-understanding in the full open system. Atmospheric simulation chambers comprise an intermediate in complexity, between a classical laboratory experiment and the full, ambient system. As such, they can generate large volumes of difficult-to-interpret data. Here we describe and implement a chemometric dimension reduction methodology for the deconvolution and interpretation of complex gas- and particle-phase composition spectra. The methodology comprises principal component analysis (PCA), hierarchical cluster analysis (HCA) and positive least-squares discriminant analysis (PLS-DA). These methods are, for the first time, applied to simultaneous gas- and particle-phase composition data obtained from a comprehensive series of environmental simulation chamber experiments focused on biogenic volatile organic compound (BVOC) photooxidation and associated secondary organic aerosol (SOA) formation. We primarily investigated the biogenic SOA precursors isoprene, α-pinene, limonene, myrcene, linalool and β-caryophyllene. The chemometric analysis is used to classify the oxidation systems and resultant SOA according to the controlling chemistry and the products formed. Results show that "model" biogenic oxidative systems can be successfully separated and classified according to their oxidation products. Furthermore, a holistic view of results obtained across both the gas- and particle-phases shows the different SOA formation chemistry, initiating in the gas-phase, proceeding to govern the differences between the various BVOC SOA compositions. The results obtained are used to describe the particle composition in the context of the oxidised gas-phase matrix. An extension of the technique, which incorporates into the statistical models data from anthropogenic (i.e. toluene) oxidation and "more realistic" plant mesocosm systems, demonstrates that such an ensemble of chemometric mapping has the potential to be used for the classification of more complex spectra of unknown origin. More specifically, the addition of mesocosm data from fig and birch tree experiments shows that isoprene and monoterpene emitting sources, respectively, can be mapped onto the statistical model structure and their positional vectors can provide insight into their biological sources and controlling oxidative chemistry. The potential to extend the methodology to the analysis of ambient air is discussed using results obtained from a zero-dimensional box model incorporating mechanistic data obtained from the Master Chemical Mechanism (MCMv3.2). Such an extension to analysing ambient air would prove a powerful asset in assisting with the identification of SOA sources and the elucidation of the underlying chemical mechanisms involved.


2017 ◽  
Vol 17 (12) ◽  
pp. 7333-7344 ◽  
Author(s):  
Tengyu Liu ◽  
Zijun Li ◽  
ManNin Chan ◽  
Chak K. Chan

Abstract. Cooking emissions can potentially contribute to secondary organic aerosol (SOA) but remain poorly understood. In this study, formation of SOA from gas-phase emissions of five heated vegetable oils (i.e., corn, canola, sunflower, peanut and olive oils) was investigated in a potential aerosol mass (PAM) chamber. Experiments were conducted at 19–20 °C and 65–70 % relative humidity (RH). The characterization instruments included a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS). The efficiency of SOA production, in ascending order, was peanut oil, olive oil, canola oil, corn oil and sunflower oil. The major SOA precursors from heated cooking oils were related to the content of monounsaturated fat and omega-6 fatty acids in cooking oils. The average production rate of SOA, after aging at an OH exposure of 1. 7 × 1011 molecules cm−3 s, was 1. 35 ± 0. 30 µg min−1, 3 orders of magnitude lower compared with emission rates of fine particulate matter (PM2. 5) from heated cooking oils in previous studies. The mass spectra of cooking SOA highly resemble field-derived COA (cooking-related organic aerosol) in ambient air, with R2 ranging from 0.74 to 0.88. The average carbon oxidation state (OSc) of SOA was −1.51 to −0.81, falling in the range between ambient hydrocarbon-like organic aerosol (HOA) and semi-volatile oxygenated organic aerosol (SV-OOA), indicating that SOA in these experiments was lightly oxidized.


2005 ◽  
Vol 2 (1) ◽  
pp. 35 ◽  
Author(s):  
David Johnson ◽  
Michael E. Jenkin ◽  
Klaus Wirtz ◽  
Montserrat Martin-Reviejo

Environmental Context. Atmospheric particulate material can affect the radiative balance of the atmosphere and is believed to be detrimental to human health. Secondary organic aerosols (SOA), which make a significant contribution to the total atmospheric burden of fine particulate material, are formed in situ following the photochemical transformation of organic pollutants into relatively less-volatile, oxygenated compounds which can subsequently transfer from the gas phase to a particle phase. SOA formation from the atmospheric photooxidation of aromatic hydrocarbons—present, for example, as a result of automobile use—is believed to be important in the urban environment and yet the mechanisms are not well understood. For example, even the reasons for observed variations in the relative propensity for SOA formation, from the photooxidation of various simple aromatic hydrocarbons, are not clear. Abstract. The formation and composition of secondary organic aerosol (SOA) from the photooxidation of benzene, p-xylene, and 1,3,5-trimethylbenzene has been simulated using the Master Chemical Mechanism version 3.1 (MCM v3.1) coupled to a representation of the transfer of organic material from the gas to particle phase. The combined mechanism was tested against data obtained from a series of experiments conducted at the European Photoreactor (EUPHORE) outdoor smog chamber in Valencia, Spain. Simulated aerosol mass concentrations compared reasonably well with the measured SOA data only after absorptive partitioning coefficients were increased by a factor of between 5 and 30. The requirement of such scaling was interpreted in terms of the occurrence of unaccounted-for association reactions in the condensed organic phase leading to the production of relatively more nonvolatile species. Comparisons were made between the relative aerosol forming efficiencies of benzene, toluene, p-xylene, and 1,3,5-trimethylbenzene, and differences in the OH-initiated degradation mechanisms of these aromatic hydrocarbons. A strong, nonlinear relationship was observed between measured (reference) yields of SOA and (proportional) yields of unsaturated dicarbonyl aldehyde species resulting from ring-fragmenting pathways. This observation, and the results of the simulations, is strongly suggestive of the involvement of reactive aldehyde species in association reactions occurring in the aerosol phase, thus promoting SOA formation and growth. The effect of NOx concentrations on SOA formation efficiencies (and formation mechanisms) is discussed.


2009 ◽  
Vol 9 (1) ◽  
pp. 1873-1905
Author(s):  
A. W. H. Chan ◽  
K. E. Kautzman ◽  
P. S. Chhabra ◽  
J. D. Surratt ◽  
M. N. Chan ◽  
...  

Abstract. Current atmospheric models do not include secondary organic aerosol (SOA) production from gas-phase reactions of polycyclic aromatic hydrocarbons (PAHs). Recent studies have shown that primary semivolatile emissions, previously assumed to be inert, undergo oxidation in the gas phase, leading to SOA formation. This opens the possibility that low-volatility gas-phase precursors are a potentially large source of SOA. In this work, SOA formation from gas-phase photooxidation of naphthalene, 1-methylnaphthalene (1-MN), 2-methylnaphthalene (2-MN), and 1,2-dimethylnaphthalene (1,2-DMN) is studied in the Caltech dual 28-m3 chambers. Under high-NOx conditions and aerosol mass loadings between 10 and 40 μg m


Sign in / Sign up

Export Citation Format

Share Document