scholarly journals The biomass burning aerosol influence on precipitation over the Central Amazon: an observational study

2014 ◽  
Vol 14 (13) ◽  
pp. 18879-18904 ◽  
Author(s):  
W. A. Gonçalves ◽  
L. A. T. Machado ◽  
P.-E. Kirstetter

Abstract. Understanding the aerosol influence on clouds and precipitation is an important key to reduce uncertainties in simulations of climate change scenarios with regards to deforestation fires. Here, we associate rainfall characteristics obtained by an S-Band radar in the Amazon with in situ measurements of biomass burning aerosols for the entire year of 2009. The most important results were obtained during the dry semester (July–December). The results indicate that the aerosol influence on precipitating systems is modulated by the atmospheric instability degree. For stable atmospheres, the higher the aerosol concentration, the lower the precipitation over the region. On the other hand, for unstable cases, higher concentrations of particulate material are associated with more precipitation, elevated presence of ice and larger rain cells, which suggests an association with long lived systems. The results presented were statistically significant. However, due to the limitation imposed by the dataset used, some important features such as wet scavenging and droplet size distribution need further clarification. Regional climate model simulations in addition with new field campaigns could aggregate information to the aerosol/precipitation relationship.

2015 ◽  
Vol 15 (12) ◽  
pp. 6789-6800 ◽  
Author(s):  
W. A. Gonçalves ◽  
L. A. T. Machado ◽  
P.-E. Kirstetter

Abstract. Understanding the influence of biomass burning aerosol on clouds and precipitation in the Amazon is key to reducing uncertainties in simulations of climate change scenarios with regard to deforestation fires. Here, we associate rainfall characteristics obtained from an S-band radar in the Amazon with in situ measurements of biomass burning aerosol for the entire year of 2009. The most important results were obtained during the dry season (July–December). The results indicate that the influence of aerosol on precipitating systems is modulated by the atmospheric degree of instability. For less unstable atmospheres, the higher the aerosol concentration is, the lower the precipitation is over the region. In contrast, for more unstable cases, higher concentrations of black carbon are associated with greater precipitation, increased ice content, and larger rain cells; this finding suggests an association with long-lived systems. The results presented are statistically significant. However, due to limitations imposed by the available data set, important features, such as the contribution of each mechanism to the rainfall suppression, need further investigation. Regional climate model simulations with aircraft and radar measurements would help clarify these questions.


2008 ◽  
Vol 113 (D14) ◽  
Author(s):  
Yan Zhang ◽  
Rong Fu ◽  
Hongbin Yu ◽  
Robert E. Dickinson ◽  
Robinson Negron Juarez ◽  
...  

2020 ◽  
Vol 4 (1) ◽  
pp. 6
Author(s):  
Alexis Augusto Hernández-Mansilla ◽  
Francisco Estrada-Porrúa ◽  
Oscar Calderón-Bustamante ◽  
Graciela Lucía Binimelis de Raga

Current changes in climate conditions due to global warming affect the phenological behavior of economically important cultivable plant species, with consequences for the food security of many countries, particularly in small vulnerable islands. Thus, the objective of this study was to evaluate the thermal viability of Solanum tuberosum (L.) through the behavior of the Thermal Index of Biological Development (ITDB) of two cultivation areas in Cuba under different climate change scenarios. For the analysis, we elaborated bioclimatic scenarios by calculating the ITDB through a grounded and parameterized stochastic function based on the thermal values established for the phenological development of the species. We used the mean temperature values from the period 1980 to 2010 (historical reference period) of the Meteorological Stations: 78320 “Güira de Melena” and 78346 “Venezuela”, located at the western and central of Cuba respectively. We also used modeled data from RCP 2.6 scenarios; 4.5 and 8.5 from the PRECIS-CARIBE Regional Climate Model, which used global outputs from the ECHAM5 MCG for the period 2010 to 2100. As result, the scenarios showed that the annual average ITDB ranges from 0.7 to 0.8, which indicates that until 2010 there were temporary spaces with favorable thermal conditions for the species, but not for the period from 2010 to 2100 in RCP 4.5 and 8.5. In these scenarios, there was a progressive decrease in the indicator that warned of a marked loss of Viability of S. tuberosum, reduction of the time-space to cultivate this species (particularly the month of April is the most inappropriate for the ripening of the tuber). These results showed that Cuba requires the establishment of an adaptation program with adjustments in the sowing and production calendar, the use of short-cycle varieties of less than 120 days, the management of genotypes adaptable to high temperatures, and the application of “Agriculture Climate Smart”, to reduce risks in food safety.


Sign in / Sign up

Export Citation Format

Share Document