scholarly journals Evaluation of a regional air quality model using satellite column NO<sub>2</sub>: treatment of observation errors and model boundary conditions and emissions

2014 ◽  
Vol 14 (15) ◽  
pp. 21749-21784
Author(s):  
R. J. Pope ◽  
M. P. Chipperfield ◽  
N. H. Savage ◽  
C. Ordóñez ◽  
L. S. Neal ◽  
...  

Abstract. We compare tropospheric column NO2 between the UK Met Office operational Air Quality in the Unified Model (AQUM) and satellite observations from the Ozone Monitoring Instrument (OMI) for 2006. Column NO2 retrievals from satellite instruments are prone to large uncertainty from random, systematic and smoothing errors. We present an algorithm to reduce the random error of time-averaged observations, once smoothing errors have been removed with application of satellite averaging kernels to the model data. This reduces the total error in seasonal mean columns by 30–90%, which allows critical evaluation of the model. The standard AQUM configuration evaluated here uses chemical lateral boundary conditions (LBCs) from the GEMS (Global and regional Earth-system Monitoring using Satellite and in-situ data) reanalysis. In summer the standard AQUM overestimates column NO2 in northern England and Scotland, but underestimates it over continental Europe. In winter, the model overestimates column NO2 across the domain. We show that missing heterogeneous hydrolysis of N2O5 in AQUM is a significant sink of column NO2 and that the introduction of this process corrects some of the winter biases. The sensitivity of AQUM summer column NO2 to different chemical LBCs and NOx emissions datasets are investigated. Using Monitoring Atmospheric Composition and Climate (MACC) LBCs increases AQUM O3 concentrations compared with the default GEMS LBCs. This enhances the NOx-O3 coupling leading to increased AQUM column NO2 in both summer and winter degrading the comparisons with OMI. Sensitivity experiments suggest that the cause of the remaining northern England and Scotland summer column NO2 overestimation is the representation of point source (power station) emissions in the model.

2015 ◽  
Vol 15 (10) ◽  
pp. 5611-5626 ◽  
Author(s):  
R. J. Pope ◽  
M. P. Chipperfield ◽  
N. H. Savage ◽  
C. Ordóñez ◽  
L. S. Neal ◽  
...  

Abstract. We compare tropospheric column NO2 between the UK Met Office operational Air Quality in the Unified Model (AQUM) and satellite observations from the Ozone Monitoring Instrument (OMI) for 2006. Column NO2 retrievals from satellite instruments are prone to large uncertainty from random, systematic and smoothing errors. We present an algorithm to reduce the random error of time-averaged observations, once smoothing errors have been removed with application of satellite averaging kernels to the model data. This reduces the total error in seasonal mean columns by 10–70%, which allows critical evaluation of the model. The standard AQUM configuration evaluated here uses chemical lateral boundary conditions (LBCs) from the GEMS (Global and regional Earth-system Monitoring using Satellite and in situ data) reanalysis. In summer the standard AQUM overestimates column NO2 in northern England and Scotland, but underestimates it over continental Europe. In winter, the model overestimates column NO2 across the domain. We show that missing heterogeneous hydrolysis of N2O5 in AQUM is a significant sink of column NO2 and that the introduction of this process corrects some of the winter biases. The sensitivity of AQUM summer column NO2 to different chemical LBCs and NOx emissions data sets are investigated. Using Monitoring Atmospheric Composition and Climate (MACC) LBCs increases AQUM O3 concentrations compared with the default GEMS LBCs. This enhances the NOx–O3 coupling leading to increased AQUM column NO2 in both summer and winter degrading the comparisons with OMI. Sensitivity experiments suggest that the cause of the remaining northern England and Scotland summer column NO2 overestimation is the representation of point source (power station) emissions in the model.


2014 ◽  
Vol 7 (1) ◽  
pp. 339-360 ◽  
Author(s):  
B. H. Henderson ◽  
F. Akhtar ◽  
H. O. T. Pye ◽  
S. L. Napelenok ◽  
W. T. Hutzell

Abstract. Transported air pollutants receive increasing attention as regulations tighten and global concentrations increase. The need to represent international transport in regional air quality assessments requires improved representation of boundary concentrations. Currently available observations are too sparse vertically to provide boundary information, particularly for ozone precursors, but global simulations can be used to generate spatially and temporally varying lateral boundary conditions (LBC). This study presents a public database of global simulations designed and evaluated for use as LBC for air quality models (AQMs). The database covers the contiguous United States (CONUS) for the years 2001–2010 and contains hourly varying concentrations of ozone, aerosols, and their precursors. The database is complemented by a tool for configuring the global results as inputs to regional scale models (e.g., Community Multiscale Air Quality or Comprehensive Air quality Model with extensions). This study also presents an example application based on the CONUS domain, which is evaluated against satellite retrieved ozone and carbon monoxide vertical profiles. The results show performance is largely within uncertainty estimates for ozone from the Ozone Monitoring Instrument and carbon monoxide from the Measurements Of Pollution In The Troposphere (MOPITT), but there were some notable biases compared with Tropospheric Emission Spectrometer (TES) ozone. Compared with TES, our ozone predictions are high-biased in the upper troposphere, particularly in the south during January. This publication documents the global simulation database, the tool for conversion to LBC, and the evaluation of concentrations on the boundaries. This documentation is intended to support applications that require representation of long-range transport of air pollutants.


2019 ◽  
Vol 13 (1) ◽  
pp. 191-200
Author(s):  
Bogdan Alexandru Maco ◽  
Nicoleta Ionac ◽  
George Tudorache

Abstract Air pollution is one of the major problems of mankind, transport of pollutants extending far beyond the borders of the countries where they were produced, causing unpredictable, direct and indirect changes of the environment. The main tool for the study of this phenomenon consists of mathematical modeling of complex physical and chemical phenomena involved. In practice, air emissions are estimated on basis of measurements taken from selected sources being representative of the major categories and types. At national level, the Air Quality Evaluation Center (CECA) provides regular reports to the European Environment Agency (EEA) or the European Commission as requirements of Romania’s lawful duties in air quality domain. The registry of emissions TNO/ MACC (Netherlands Organisation for Applied Scientific Research/ Monitoring Atmospheric Composition and Climate) contains emissions inventories which have been homogenized and checked in advance and obtained from emissions officially reported at sectoral level for each country. In this study, for the analysis of the weather numerical dispersion and transport of pollutants, it has been used the numerical air quality model WRF-CHEM version 3.5, centered over Romania, at the spatial resolution of 10 km, using as input data the TNO emission database for 2009. By interpolating values from the regular grid of the TNO database with the WRF-CHEM model 3.5 grid, monthly average values were obtained for each day of the week, for any parameter considered. Preliminary results obtained for different pollutants (for example: PM10, O3) confirm the need to validate these results by implementing and integrating air quality forecasting model by assimilating different types of measurements (data model, gravimetric data observations, etc.).


2017 ◽  
Vol 17 (9) ◽  
pp. 5829-5849 ◽  
Author(s):  
Theano Drosoglou ◽  
Alkiviadis F. Bais ◽  
Irene Zyrichidou ◽  
Natalia Kouremeti ◽  
Anastasia Poupkou ◽  
...  

Abstract. One of the main issues arising from the comparison of ground-based and satellite measurements is the difference in spatial representativeness, which for locations with inhomogeneous spatial distribution of pollutants may lead to significant differences between the two data sets. In order to investigate the spatial variability of tropospheric NO2 within a sub-satellite pixel, a campaign which lasted for about 6 months was held in the greater area of Thessaloniki, Greece. Three multi-axial differential optical absorption spectroscopy (MAX-DOAS) systems performed measurements of tropospheric NO2 columns at different sites representative of urban, suburban and rural conditions. The direct comparison of these ground-based measurements with corresponding products from the Ozone Monitoring Instrument onboard NASA's Aura satellite (OMI/Aura) showed good agreement over the rural and suburban areas, while the comparison with the Global Ozone Monitoring Experiment-2 (GOME-2) onboard EUMETSAT's Meteorological Operational satellites' (MetOp-A and MetOp-B) observations is good only over the rural area. GOME-2A and GOME-2B sensors show an average underestimation of tropospheric NO2 over the urban area of about 10.51 ± 8.32  ×  1015 and 10.21 ± 8.87  × 1015 molecules cm−2, respectively. The mean difference between ground-based and OMI observations is significantly lower (6.60 ± 5.71  ×  1015 molecules cm−2). The differences found in the comparisons of MAX-DOAS data with the different satellite sensors can be attributed to the higher spatial resolution of OMI, as well as the different overpass times and NO2 retrieval algorithms of the satellites. OMI data were adjusted using factors calculated by an air quality modeling tool, consisting of the Weather Research and Forecasting (WRF) mesoscale meteorological model and the Comprehensive Air Quality Model with Extensions (CAMx) multiscale photochemical transport model. This approach resulted in significant improvement of the comparisons over the urban monitoring site. The average difference of OMI observations from MAX-DOAS measurements was reduced to −1.68 ± 5.01  ×  1015 molecules cm−2.


2017 ◽  
Vol 17 (9) ◽  
pp. 5643-5664 ◽  
Author(s):  
Prakash Karamchandani ◽  
Yoann Long ◽  
Guido Pirovano ◽  
Alessandra Balzarini ◽  
Greg Yarwood

Abstract. Source apportionment modeling provides valuable information on the contributions of different source sectors and/or source regions to ozone (O3) or fine particulate matter (PM2.5) concentrations. This information can be useful in designing air quality management strategies and in understanding the potential benefits of reducing emissions from a particular source category. The Comprehensive Air quality Model with Extensions (CAMx) offers unique source attribution tools, called the Ozone and Particulate Source Apportionment Technology (OSAT/PSAT), which track source contributions. We present results from a CAMx source attribution modeling study for a summer month and a winter month using a recently evaluated European CAMx modeling database developed for Phase 3 of the Air Quality Model Evaluation International Initiative (AQMEII). The contributions of several source sectors (including model boundary conditions of chemical species representing transport of emissions from outside the modeling domain as well as initial conditions of these species) to O3 or PM2.5 concentrations in Europe were calculated using OSAT and PSAT, respectively. A 1-week spin-up period was used to reduce the influence of initial conditions. Evaluation focused on 16 major cities and on identifying source sectors that contributed above 5 %. Boundary conditions have a large impact on summer and winter ozone in Europe and on summer PM2.5, but they are only a minor contributor to winter PM2.5. Biogenic emissions are important for summer ozone and PM2.5. The important anthropogenic sectors for summer ozone are transportation (both on-road and non-road), energy production and conversion, and industry. In two of the 16 cities, solvent and product also contributed above 5 % to summertime ozone. For summertime PM2.5, the important anthropogenic source sectors are energy, transportation, industry, and agriculture. Residential wood combustion is an important anthropogenic sector in winter for PM2.5 over most of Europe, with larger contributions in central and eastern Europe and the Nordic cities. Other anthropogenic sectors with large contributions to wintertime PM2.5 include energy, transportation, and agriculture.


2016 ◽  
Author(s):  
Prakash Karamchandani ◽  
Yoann Long ◽  
Guido Pirovano ◽  
Alessandra Balzarini ◽  
Greg Yarwood

Abstract. Source apportionment modeling provides valuable information on the contributions of different source sectors and/or source regions to ozone (O3) or fine particulate matter (PM2.5) concentrations. This information can be useful in designing air quality management strategies and in understanding the potential benefits of reducing emissions from a particular source category. The Comprehensive Air quality Model with Extensions (CAMx) offers unique source attribution tools, called the Ozone and Particulate Source Apportionment Technology (OSAT/PSAT), which track source contributions. We present results from a CAMx source attribution modeling study for a summer month and a winter month using a recently evaluated European CAMx modeling database developed for Phase 3 of the Air Quality Model Evaluation International Initiative (AQMEII). The contributions of several source sectors (including boundary conditions representing transport of emissions from outside the modeling domain) to O3 or PM2.5 concentrations in Europe were calculated using OSAT and PSAT, respectively. Evaluation focused on 16 major cities and on identifying source sectors that contributed above 5 %. Boundary conditions have a large impact on summer and winter ozone in Europe and on summer PM2.5, but are only a minor contributor to winter PM2.5. Biogenic emissions are important for summer ozone and PM2.5. The important anthropogenic sectors for summer ozone are transportation (both on-road and non-road), energy production and conversion, and the industry sector. In two of the 16 cities, solvent and product also contributed above 5 % to summertime ozone. For summertime PM2.5, the important anthropogenic source sectors are the energy sector, transportation, industry, and agriculture. Residential wood combustion is an important anthropogenic sector in winter for PM2.5 over most of Europe, with larger contributions in central and eastern Europe and the Nordic cities. Other anthropogenic sectors with large contributions to wintertime PM2.5 include energy, transportation, and agriculture.


2021 ◽  
Author(s):  
Ερμιόνη Σολωμού

Αντικείμενο της παρούσας διδακτορικής διατριβής είναι η αξιολόγηση της επίδοσης αριθμητικού μοντέλου ποιότητας του αέρα και η ανάπτυξη μετεπεξεργαστικού φίλτρου για τη βελτίωση της απόδοσης του. Η περιοχή μελέτης είναι η Νοτιοανατολική Ευρώπη και ιδιαίτερη έμφαση θα δοθεί στην περιοχή της Ανατολικής Μεσογείου. Στο πρώτο μέρος της διατριβής αξιολογείται η ικανότητα δύο συστημάτων μοντέλων να αναπαραγάγουν την επίδραση των Ετησιών ανέμων στα επίπεδα του επιφανειακού όζοντος στην Ανατολική Μεσόγειο. Για το σκοπό αυτό χρησιμοποιείται το παγκόσμιο μοντέλο MACC (Monitoring Atmospheric Composition and Climate) Reanalysis IFS - MOZART (Integrated Forecast System - Model for Ozone and Related chemical Tracer) και το σύνολο περιφερειακών μοντέλων MACC-II (MACC-Interim Implementation). Η αξιολόγηση πραγματοποιείται για τρεις σταθμούς υποβάθρου που βρίσκονται στη Μάλτα, στην Κύπρο και την Κρήτη για μια χρονική περίοδο πέντε μηνών (Μάιος - Σεπτέμβριος) για τα έτη 2011-2012. Τα αποτελέσματα δείχνουν ότι παρόλο που τα δύο συστήματα μοντέλων υποεκτιμούν συστηματικά τις συγκεντρώσεις του επιφανειακού όζοντος, μπορούν να συλλάβουν ως ένα βαθμό την επίδραση των Ετησιών με το σύνολο των περιφερειακών μοντέλων να αναπαράγει καλύτερα τις τιμές του όζοντος σε σύγκριση με το παγκόσμιο μοντέλο. Στο δεύτερο μέρος της μελέτης αξιολογείται η επίδοση του φωτοχημικού μοντέλου CAMx (Comprehensive Air Quality Model with Extensions) που συνδυάζεται με το μετεωρολογικό μοντέλο WRF (Weather Research και Forecasting). Για το σκοπό αυτό χρησιμοποιούνται προσομοιώσεις για τα επίπεδα των O3, ΝΟ2, ΝΟ, SO2, CO και των αιωρούμενων σωματιδίων. Οι προσομοιώσεις αυτές συγκρίνονται με επίγειες μετρήσεις από 28 σταθμούς παρακολούθησης της ατμοσφαιρικής ρύπανσης για την Ελλάδα. Η αποτίμηση της επίδοσης του μοντέλου WRF-CAMx αφορά σε ένα μήνα για κάθε εποχή του έτους 2012 και πιο συγκεκριμένα στους μήνες Ιανουάριο, Απρίλιο, Ιούλιο και Οκτώβριο. Τα αποτελέσματα της αξιολόγησης δείχνουν ότι η επίδοση του WRF-CAMx είναι ικανοποιητική για τα αιωρούμενα σωματίδια και τους αέριους ρύπους σχεδόν για όλους τους σταθμούς. Λιγότερο καλή είναι η επίδοση του μοντέλου για το SO2. Το μοντέλο φαίνεται να υπερεκτιμά τις συγκεντρώσεις του όζοντος σε αρκετούς σταθμούς με αποτέλεσμα μια μικρή συνολική υπερεκτίμηση με εξαίρεση τον Ιούλιο. Για τους υπόλοιπους αέριους ρύπους, το μοντέλο εμφανίζει μικρή υποεκτίμηση των επιπέδων συγκέντρωσης. Τα επίπεδα συγκέντρωσης των αιωρούμενων σωματιδίων PM10, εμφανίζουν μικρή υπερεκτίμηση κατά τη διάρκεια του Ιανουαρίου και Απριλίου και υποεκτίμηση τους άλλους δύο μήνες. Παρόμοια αποτελέσματα υπολογίζονται και για τα ΡΜ2.5. Ο στόχος της τελευταίας μελέτης είναι η βελτίωση της επίδοσης του μοντέλου WRF-CAMx στην προσομοίωση των επιπέδων ρύπανσης στην Ελλάδα. Για το σκοπό αυτό αναπτύχτηκε στο Εργαστήριο Φυσικής της Ατμόσφαιρας του τμήματος Φυσικής του Πανεπιστήμιου Πατρών μετεπεξεργαστικό φίλτρο που βασίζεται στη μεθοδολογία Analog Ensemble (AnEn). Το φίλτρο εφαρμόζεται στις προσομοιώσεις του όζοντος και των αιωρούμενων σωματιδίων. Η AnEn αναζητά analogs σε προβλέψεις του παρελθόντος για να διορθώσει την παρούσα πρόβλεψη. Όπως αποδεικνύεται από την αποτίμηση της εφαρμογής του φίλτρου οι διορθωμένες προβλέψεις εμφανίζονται σημαντικά βελτιωμένες σε σχέση με τις αρχικές προβλέψεις του μοντέλου. Πιο συγκεκριμένα, παρατηρείται μια σαφής βελτίωση της συσχέτισης μεταξύ των διορθωμένων προβλέψεων και των παρατηρήσεων.


2013 ◽  
Vol 6 (3) ◽  
pp. 4665-4704 ◽  
Author(s):  
B. H. Henderson ◽  
F. Akhtar ◽  
H. O. T. Pye ◽  
S. L. Napelenok ◽  
W. T. Hutzell

Abstract. Transported air pollutants receive increasing attention as regulations tighten and global concentrations increase. The need to represent international transport in regional air quality assessments requires improved representation of boundary concentrations. Currently available observations are too sparse vertically to provide boundary information, particularly for ozone precursors, but global simulations can be used to generate spatially and temporally varying Lateral Boundary Conditions (LBC). This study presents a public database of global simulations designed and evaluated for use as LBC for air quality models (AQMs). The database covers the contiguous United States (CONUS) for the years 2000–2010 and contains hourly varying concentrations of ozone, aerosols, and their precursors. The database is complimented by a tool for configuring the global results as inputs to regional scale models (e.g., Community Multiscale Air Quality or Comprehensive Air quality Model with extensions). This study also presents an example application based on the CONUS domain, which is evaluated against satellite retrieved ozone vertical profiles. The results show performance is largely within uncertainty estimates for the Tropospheric Emission Spectrometer (TES) with some exceptions. The major difference shows a high bias in the upper troposphere along the southern boundary in January. This publication documents the global simulation database, the tool for conversion to LBC, and the fidelity of concentrations on the boundaries. This documentation is intended to support applications that require representation of long-range transport of air pollutants.


2014 ◽  
Vol 14 (7) ◽  
pp. 3637-3656 ◽  
Author(s):  
C. A. McLinden ◽  
V. Fioletov ◽  
K. F. Boersma ◽  
S. K. Kharol ◽  
N. Krotkov ◽  
...  

Abstract. Satellite remote sensing is increasingly being used to monitor air quality over localized sources such as the Canadian oil sands. Following an initial study, significantly low biases have been identified in current NO2 and SO2 retrieval products from the Ozone Monitoring Instrument (OMI) satellite sensor over this location resulting from a combination of its rapid development and small spatial scale. Air mass factors (AMFs) used to convert line-of-sight "slant" columns to vertical columns were re-calculated for this region based on updated and higher resolution input information including absorber profiles from a regional-scale (15 km × 15 km resolution) air quality model, higher spatial and temporal resolution surface reflectivity, and an improved treatment of snow. The overall impact of these new Environment Canada (EC) AMFs led to substantial increases in the peak NO2 and SO2 average vertical column density (VCD), occurring over an area of intensive surface mining, by factors of 2 and 1.4, respectively, relative to estimates made with previous AMFs. Comparisons are made with long-term averages of NO2 and SO2 (2005–2011) from in situ surface monitors by using the air quality model to map the OMI VCDs to surface concentrations. This new OMI-EC product is able to capture the spatial distribution of the in situ instruments (slopes of 0.65 to 1.0, correlation coefficients of >0.9). The concentration absolute values from surface network observations were in reasonable agreement, with OMI-EC NO2 and SO2 biased low by roughly 30%. Several complications were addressed including correction for the interference effect in the surface NO2 instruments and smoothing and clear-sky biases in the OMI measurements. Overall these results highlight the importance of using input information that accounts for the spatial and temporal variability of the location of interest when performing retrievals.


2009 ◽  
Vol 43 (32) ◽  
pp. 4873-4885 ◽  
Author(s):  
Mehrez Samaali ◽  
Michael D. Moran ◽  
Véronique S. Bouchet ◽  
Radenko Pavlovic ◽  
Sophie Cousineau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document