scholarly journals Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the arctic troposphere

2015 ◽  
Vol 15 (12) ◽  
pp. 16715-16745 ◽  
Author(s):  
J. W. Chi ◽  
W. J. Li ◽  
D. Z. Zhang ◽  
J. C. Zhang ◽  
Y. T. Lin ◽  
...  

Abstract. Sea salt aerosols (SSA) are dominant particles in the arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes of physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased but the C, N, O, and S content increased. 12C14N− mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C14N− line scans further show that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces determines their hygroscopic and optical properties. These abundant SSA, whose reactive surfaces absorb inorganic and organic acidic gases in the arctic troposphere, need to be incorporated into atmospheric chemical models.

2015 ◽  
Vol 15 (19) ◽  
pp. 11341-11353 ◽  
Author(s):  
J. W. Chi ◽  
W. J. Li ◽  
D. Z. Zhang ◽  
J. C. Zhang ◽  
Y. T. Lin ◽  
...  

Abstract. Sea salt aerosols (SSA) are dominant particles in the Arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes in physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard, in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased, the C, N, O, and S content increased. 12C- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C- line scan further shows that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces likely determines their hygroscopic and optical properties. These abundant SSA as reactive surfaces adsorbing inorganic and organic acidic gases can shorten acidic gas lifetime and influence the possible gaseous reactions in the Arctic atmosphere, which need to be incorporated into atmospheric chemical models in the Arctic troposphere.


2010 ◽  
Vol 10 (4) ◽  
pp. 1473-1490 ◽  
Author(s):  
A. Dörnbrack ◽  
I. S. Stachlewska ◽  
C. Ritter ◽  
R. Neuber

Abstract. This paper reports on backscatter and depolarization measurements by an airborne lidar in the Arctic during the ASTAR 2004 campaign. A unique weather situation facilitated the observation of the aerosol concentration under strongly forced atmospheric conditions. The vigorous easterly winds distorted the flow past Svalbard in such a way that mesoscale features were visible in the remote-sensing observations: The formation of a well-mixed aerosol layer inside the Adventdalen and the subsequent thinning of the aerosol plume were observed over the Isfjorden. Additionally, mobilization of sea salt aerosols due to a coastal low-level jet at the northern tip of Svalbard resulted in a sloped boundary layer toward north. Mesoscale numerical modelling was applied to identify the sources of the aerosol particles and to explain the observed patterns.


2012 ◽  
Vol 5 (3) ◽  
pp. 709-739 ◽  
Author(s):  
X. Liu ◽  
R. C. Easter ◽  
S. J. Ghan ◽  
R. Zaveri ◽  
P. Rasch ◽  
...  

Abstract. A modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the atmospheric component of the Community Earth System Model version 1 (CESM1). MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically-based manner. Two MAM versions were developed: a more complete version with seven lognormal modes (MAM7), and a version with three lognormal modes (MAM3) for the purpose of long-term (decades to centuries) simulations. In this paper a description and evaluation of the aerosol module and its two representations are provided. Sensitivity of the aerosol lifecycle to simplifications in the representation of aerosol is discussed. Simulated sulfate and secondary organic aerosol (SOA) mass concentrations are remarkably similar between MAM3 and MAM7. Differences in primary organic matter (POM) and black carbon (BC) concentrations between MAM3 and MAM7 are also small (mostly within 10%). The mineral dust global burden differs by 10% and sea salt burden by 30–40% between MAM3 and MAM7, mainly due to the different size ranges for dust and sea salt modes and different standard deviations of the log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical and temporal variations of aerosol mass and number concentrations, size distributions, and aerosol optical properties. However, there are noticeable biases; e.g., simulated BC concentrations are significantly lower than measurements in the Arctic. There is a low bias in modeled aerosol optical depth on the global scale, especially in the developing countries. These biases in aerosol simulations clearly indicate the need for improvements of aerosol processes (e.g., emission fluxes of anthropogenic aerosols and precursor gases in developing countries, boundary layer nucleation) and properties (e.g., primary aerosol emission size, POM hygroscopicity). In addition, the critical role of cloud properties (e.g., liquid water content, cloud fraction) responsible for the wet scavenging of aerosol is highlighted.


2020 ◽  
Author(s):  
Amit Misra ◽  
Sachchida Tripathi ◽  
Harjinder Sembhi ◽  
Hartmut Boesch

Abstract. In this work we have validated Copernicus Aerosol Monitoring Service (CAMS) derived aerosol optical depth (AOD) at four locations (Kanpur, Gandhi College, Jaipur and Lahore) in the Indo-Gangetic Basin and used it to study the aerosol climatology and trend in AOD at these locations. Lahore and Kanpur are urban and industrial sites with agricultural activity in the neighbouring regions. Gandhi College is in a rural agricultural area, whereas Jaipur is a desert dust source area. Aerosol climatology at the four sites are examined with MODIS-derived NDVI and ESA-CCI derived soil moisture data. CAMS-derived AOD for black carbon, sulphate, dust, sea salt and organic matter at the four sites are studied and discussed. It is observed that sulphate AOD has the largest influence on the total aerosol climatology. Contribution from dust and sea salt aerosols is observed only during pre-monsoon and monsoon seasons, whereas non-zero AOD is observed for organic matter, black carbon and sulphate aerosols throughout the year at all sites. Comparison of CAMS AOD with AERONET AOD shows better correlation when aerosol climatology is dominated by coarse particles as compared to when it is dominated by fine particles (e.g., at Kanpur, R2pre-monsoon = 0.63 and R2winter = 0.36). Trend analysis shows largest increase in organic matter (e.g., 0.305 ± 0.021 per year at Kanpur) and least in sea salt aerosols (e.g., 0.008 ± 0.001 per year at Kanpur).


2011 ◽  
Vol 4 (4) ◽  
pp. 3485-3598 ◽  
Author(s):  
X. Liu ◽  
R. C. Easter ◽  
S. J. Ghan ◽  
R. Zaveri ◽  
P. Rasch ◽  
...  

Abstract. A modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the atmospheric component of the Community Earth System Model version 1 (CESM1). MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically based manner. Two MAM versions were developed: a more complete version with seven lognormal modes (MAM7), and a version with three lognormal modes (MAM3) for the purpose of long-term (decades to centuries) simulations. Major approximations in MAM3 include assuming immediate mixing of primary organic matter (POM) and black carbon (BC) with other aerosol components, merging of the MAM7 fine dust and fine sea salt modes into the accumulation mode, merging of the MAM7 coarse dust and coarse sea salt modes into the single coarse mode, and neglecting the explicit treatment of ammonia and ammonium cycles. Simulated sulfate and secondary organic aerosol (SOA) mass concentrations are remarkably similar between MAM3 and MAM7 as most (~90%) of these aerosol species are in the accumulation mode. Differences of POM and BC concentrations between MAM3 and MAM7 are also small (mostly within 10%) because of the assumed hygroscopic nature of POM, so that much of the freshly emitted POM and BC is wet-removed before mixing internally with soluble aerosol species. Sensitivity tests with the POM assumed to be hydrophobic and with slower aging increase the POM and BC concentrations, especially at high latitudes (by several times). The mineral dust global burden differs by 10% and sea salt burden by 30–40% between MAM3 and MAM7 mainly due to the different size ranges for dust and sea salt modes and different standard deviations of the log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical and temporal variations of aerosol mass and number concentrations, size distributions, and aerosol optical properties. However, there are noticeable biases, e.g., simulated sulfate and mineral dust concentrations at surface over the oceans are too low. Simulated BC concentrations are significantly lower than measurements in the Arctic. There is a low bias in modeled aerosol optical depth on the global scale, especially in the developing countries. There biases in aerosol simulations clearly indicate the need for improvements of aerosol processes (e.g., emission fluxes of anthropogenic aerosols and precursor gases in developing countries, boundary layer nucleation) and properties (e.g., primary aerosol emission size, POM hygroscopicity). In addition the critical role of cloud properties (e.g., liquid water content, cloud fraction) responsible for the wet scavenging of aerosol is highlighted.


2015 ◽  
Vol 12 (15) ◽  
pp. 12321-12347 ◽  
Author(s):  
K. E. Frey ◽  
W. V. Sobczak ◽  
P. J. Mann ◽  
R. M. Holmes

Abstract. The Kolyma River in Northeast Siberia is among the six largest arctic rivers and drains a region underlain by vast deposits of Holocene-aged peat and Pleistocene-aged loess known as yedoma, most of which is currently stored in ice-rich permafrost throughout the region. These peat and yedoma deposits are important sources of dissolved organic matter (DOM) to inland waters that in turn play a significant role in the transport and ultimate remineralization of organic carbon to CO2 and CH4 along the terrestrial flow-path continuum. The turnover and fate of terrigenous DOM during offshore transport will largely depend upon the composition and amount of carbon released to inland and coastal waters. Here, we measured the optical properties of chromophoric DOM (CDOM) from a geographically extensive collection of waters spanning soil pore waters, streams, rivers, and the Kolyma River mainstem throughout a ∼ 250 km transect of the northern Kolyma River basin. During the period of study, CDOM absorbance values were found to be robust proxies for the concentration of DOM, whereas additional CDOM parameters such as spectral slopes (S) were found to be useful indicators of DOM quality along the flow-path. In particular, CDOM absorption at 254 nm showed a strong relationship with dissolved organic carbon (DOC) concentrations across all water types (r2 = 0.958, p < 0.01). The spectral slope ratio (SR) of CDOM demonstrated statistically significant differences between all four water types and tracked changes in the concentration of bioavailable DOC, suggesting that this parameter may be suitable for clearly discriminating shifts in organic matter characteristics among water types along the full flow-path continuum across this landscape. The heterogeneity of environmental characteristics and extensive continuous permafrost of the Kolyma River basin combine to make this a critical region to investigate and monitor. With ongoing and future permafrost degradation, peat and yedoma deposits throughout the Northeast Siberian region will become more hydrologically active, providing greater amounts of DOM to fluvial networks and ultimately to the Arctic Ocean. The ability to rapidly and comprehensively monitor shifts in the quantity and quality of DOM across the landscape is therefore critical for understanding potential future feedbacks on the arctic carbon cycle.


2008 ◽  
Vol 8 (1) ◽  
pp. 71-94 ◽  
Author(s):  
R. Irshad ◽  
R. G. Grainger ◽  
D. M. Peters ◽  
R. A. McPheat ◽  
K. M. Smith ◽  
...  

Abstract. The extinction spectra of laboratory generated sea salt aerosols have been measured from 1 μm to 20 μm using a Bruker 66v/S FTIR spectrometer. Concomitant measurements include temperature, pressure, relative humidity and the aerosol size distribution. The refractive indices of the sea salt have been determined using a simple harmonic oscillator band model (Thomas et al., 2004) for aerosol with relative humidities between 0.1% to 100% sea salt. The resulting refractive index spectra show significant discrepancies when compared to existing sea salt refractive indices.


1997 ◽  
Vol 102 (D19) ◽  
pp. 23269-23275 ◽  
Author(s):  
I. N. Tang ◽  
A. C. Tridico ◽  
K. H. Fung

2016 ◽  
Vol 13 (8) ◽  
pp. 2279-2290 ◽  
Author(s):  
Karen E. Frey ◽  
William V. Sobczak ◽  
Paul J. Mann ◽  
Robert M. Holmes

Abstract. The Kolyma River in northeast Siberia is among the six largest Arctic rivers and drains a region underlain by vast deposits of Holocene-aged peat and Pleistocene-aged loess known as yedoma, most of which is currently stored in ice-rich permafrost throughout the region. These peat and yedoma deposits are important sources of dissolved organic matter (DOM) to inland waters that in turn play a significant role in the transport and ultimate remineralization of organic carbon to CO2 and CH4 along the terrestrial flow-path continuum. The turnover and fate of terrigenous DOM during offshore transport largely depends upon the composition and amount of carbon released to inland and coastal waters. Here, we measured the ultraviolet-visible optical properties of chromophoric DOM (CDOM) from a geographically extensive collection of waters spanning soil pore waters, streams, rivers, and the Kolyma River mainstem throughout a  ∼  250 km transect of the northern Kolyma River basin. During the period of study, CDOM absorption coefficients were found to be robust proxies for the concentration of DOM, whereas additional CDOM parameters such as spectral slopes (S) were found to be useful indicators of DOM quality along the flow path. In particular, the spectral slope ratio (SR) of CDOM demonstrated statistically significant differences between all four water types and tracked changes in the concentration of bioavailable DOC, suggesting that this parameter may be suitable for clearly discriminating shifts in organic matter characteristics among water types along the full flow-path continuum across this landscape. However, despite our observations of downstream shifts in DOM composition, we found a relatively constant proportion of DOC that was bioavailable ( ∼  3–6 % of total DOC) regardless of relative water residence time along the flow path. This may be a consequence of two potential scenarios allowing for continual processing of organic material within the system, namely (a) aquatic microorganisms are acclimating to a downstream shift in DOM composition and/or (b) photodegradation is continually generating labile DOM for continued microbial processing of DOM along the flow-path continuum. Without such processes, we would otherwise expect to see a declining fraction of bioavailable DOC downstream with increasing residence time of water in the system. With ongoing and future permafrost degradation, peat and yedoma deposits throughout the northeast Siberian region will become more hydrologically active, providing greater amounts of DOM to fluvial networks and ultimately to the Arctic Ocean. The ability to rapidly and comprehensively monitor shifts in the quantity and quality of DOM across the landscape is therefore critical for understanding potential future feedbacks within the Arctic carbon cycle.


Sign in / Sign up

Export Citation Format

Share Document