scholarly journals Synergistic use of Lagrangian dispersion modelling, satellite and surface remote sensing measurements for the investigation of volcanic plumes: the Mount Etna eruption of 25–27 October 2013

2015 ◽  
Vol 15 (21) ◽  
pp. 31335-31383 ◽  
Author(s):  
P. Sellitto ◽  
A. di Sarra ◽  
S. Corradini ◽  
M. Boichu ◽  
H. Herbin ◽  
...  

Abstract. In this paper we combine SO2/ash plume dispersion modelling, satellite and surface remote sensing observations to study the regional influence of a relatively weak volcanic eruption from Mount Etna on the optical and micro-physical properties of Mediterranean aerosols. We analyse the Mount Etna eruption episode of 25–27 October 2013. The evolution of the plume along the trajectory is investigated by means of the FLEXPART (FLEXible PARTicle dispersion model) Lagrangian dispersion model. The satellite dataset includes true colour images, retrieved values of volcanic SO2 and ash, and estimates of SO2 and ash emission rates derived from MODIS (MODerate resolution Imaging Spectroradiometer) observations, and estimates of cloud top pressure from SEVIRI (Spinning Enhanced Visible and InfraRed Imager). Surface remote sensing measurements of aerosol and SO2 made at the ENEA Station for Climate Observations (35.52° N, 12.63° E, 50 m a.s.l.) on the island of Lampedusa are used in the analysis. The combination of these different datasets suggests that SO2 and ash, despite the initial injection occurred at about 7.0 km altitude, reached altitudes around 10–12 km and influenced the aerosol size distribution at a distance more than 350 km downwind. This study indicates that even a relatively weak volcanic eruption may produce an observable effect on the aerosol properties at the regional scale. The impact of secondary sulphate particles on the aerosol size distribution at Lampedusa is discussed, and estimates of the clear sky direct aerosol radiative forcing are derived. Daily shortwave radiative forcing efficiencies are calculated with the LibRadtran model. They are estimated between −39 and −48 W m−2 AOD−1 at the top of the atmosphere, and between −66 and −49 W m−2 AOD−1, at the surface, with the variability in the estimates mainly depending on the aerosol single scattering albedo. These results suggest that sulphate particles played a large role, while the contribution by ash particles was small in the volcanic plume arriving at Lampedusa during this event.

2016 ◽  
Vol 16 (11) ◽  
pp. 6841-6861 ◽  
Author(s):  
Pasquale Sellitto ◽  
Alcide di Sarra ◽  
Stefano Corradini ◽  
Marie Boichu ◽  
Hervé Herbin ◽  
...  

Abstract. In this paper we combine SO2 and ash plume dispersion modelling with satellite and surface remote sensing observations to study the regional influence of a relatively weak volcanic eruption from Mount Etna on the optical and micro-physical properties of Mediterranean aerosols. We analyse the Mount Etna eruption episode of 25–27 October 2013. The evolution of the plume along the trajectory is investigated by means of the FLEXible PARTicle Lagrangian dispersion (FLEXPART) model. The satellite data set includes true colour images, retrieved values of volcanic SO2 and ash, estimates of SO2 and ash emission rates derived from MODIS (MODerate resolution Imaging Spectroradiometer) observations and estimates of cloud top pressure from SEVIRI (Spinning Enhanced Visible and InfraRed Imager). Surface remote sensing measurements of aerosol and SO2 made at the ENEA Station for Climate Observations (35.52° N, 12.63° E; 50 m a.s.l.) on the island of Lampedusa are used in the analysis. The combination of these different data sets suggests that SO2 and ash, despite the initial injection at about 7.0 km altitude, reached altitudes around 10–12 km and influenced the column average aerosol particle size distribution at a distance of more than 350 km downwind. This study indicates that even a relatively weak volcanic eruption may produce an observable effect on the aerosol properties at the regional scale. The impact of secondary sulfate particles on the aerosol size distribution at Lampedusa is discussed and estimates of the clear-sky direct aerosol radiative forcing are derived. Daily shortwave radiative forcing efficiencies, i.e. radiative forcing per unit AOD (aerosol optical depth), are calculated with the LibRadtran model. They are estimated between −39 and −48 W m−2 AOD−1 at the top of the atmosphere and between −66 and −49 W m−2 AOD−1 at the surface, with the variability in the estimates mainly depending on the aerosol single scattering albedo. These results suggest that sulfate particles played a large role in the transported plume composition and radiative forcing, while the contribution by ash particles was small in the volcanic plume arriving at Lampedusa during this event.


2016 ◽  
Vol 16 (14) ◽  
pp. 9435-9455 ◽  
Author(s):  
Matthew J. Alvarado ◽  
Chantelle R. Lonsdale ◽  
Helen L. Macintyre ◽  
Huisheng Bian ◽  
Mian Chin ◽  
...  

Abstract. Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The four models are the NASA Global Modeling Initiative (GMI) Combo model, GEOS-Chem v9-02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT), and the Optical Properties of Aerosol and Clouds (OPAC v3.1) package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1) to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC) on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10–23 %, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GC-RT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass fraction throughout the aerosol size distribution. Using a core-shell mixing rule in ASP overestimates aerosol absorption, especially for the fresh biomass burning aerosol measured in ARCTAS-B, suggesting the need for modeling the time-varying mixing states of aerosols in future versions of ASP.


2014 ◽  
Vol 7 (4) ◽  
pp. 4353-4381
Author(s):  
M. Bügelmayer ◽  
D. M. Roche ◽  
H. Renssen

Abstract. Recent modelling studies have indicated that icebergs alter the ocean's state, the thickness of sea ice and the prevailing atmospheric conditions, in short play an active role in the climate system. The icebergs' impact is due to their slowly released melt water which freshens and cools the ocean. The spatial distribution of the icebergs and thus their melt water depends on the forces (atmospheric and oceanic) acting on them as well as on the icebergs' size. The studies conducted so far have in common that the icebergs were moved by reconstructed or modelled forcing fields and that the initial size distribution of the icebergs was prescribed according to present day observations. To address these shortcomings, we used the climate model iLOVECLIM that includes actively coupled ice-sheet and iceberg modules, to conduct 15 sensitivity experiments to analyse (1) the impact of the forcing fields (atmospheric vs. oceanic) on the icebergs' distribution and melt flux, and (2) the effect of the used initial iceberg size on the resulting Northern Hemisphere climate and ice sheet under different climate conditions (pre-industrial, strong/weak radiative forcing). Our results show that, under equilibrated pre-industrial conditions, the oceanic currents cause the bergs to stay close to the Greenland and North American coast, whereas the atmospheric forcing quickly distributes them further away from their calving site. These different characteristics strongly affect the lifetime of icebergs, since the wind-driven icebergs melt up to two years faster as they are quickly distributed into the relatively warm North Atlantic waters. Moreover, we find that local variations in the spatial distribution due to different iceberg sizes do not result in different climate states and Greenland ice sheet volume, independent of the prevailing climate conditions (pre-industrial, warming or cooling climate). Therefore, we conclude that local differences in the distribution of their melt flux do not alter the prevailing Northern Hemisphere climate and ice sheet under equilibrated conditions und constant supply of icebergs. Furthermore, our results suggest that the applied radiative forcing scenarios have a stronger impact on climate than the used initial size distribution of the icebergs.


2019 ◽  
Vol 19 (17) ◽  
pp. 11089-11103 ◽  
Author(s):  
Yue Jia ◽  
Susann Tegtmeier ◽  
Elliot Atlas ◽  
Birgit Quack

Abstract. It is an open question how localized elevated emissions of bromoform (CHBr3) and other very short-lived halocarbons (VSLHs), found in coastal and upwelling regions, and low background emissions, typically found over the open ocean, impact the atmospheric VSLH distribution. In this study, we use the Lagrangian dispersion model FLEXPART to simulate atmospheric CHBr3 resulting from assumed uniform background emissions, and from elevated emissions consistent with those derived during three tropical cruise campaigns. The simulations demonstrate that the atmospheric CHBr3 distributions in the uniform background emissions scenario are highly variable with high mixing ratios appearing in regions of convergence or low wind speed. This relation holds on regional and global scales. The impact of localized elevated emissions on the atmospheric CHBr3 distribution varies significantly from campaign to campaign. The estimated impact depends on the strength of the emissions and the meteorological conditions. In the open waters of the western Pacific and Indian oceans, localized elevated emissions only slightly increase the background concentrations of atmospheric CHBr3, even when 1∘ wide source regions along the cruise tracks are assumed. Near the coast, elevated emissions, including hot spots up to 100 times larger than the uniform background emissions, can be strong enough to be distinguished from the atmospheric background. However, it is not necessarily the highest hot spot emission that produces the largest enhancement, since the tug-of-war between fast advective transport and local accumulation at the time of emission is also important. Our results demonstrate that transport variations in the atmosphere itself are sufficient to produce highly variable VSLH distributions, and elevated VSLHs in the atmosphere do not always reflect a strong localized source. Localized elevated emissions can be obliterated by the highly variable atmospheric background, even if they are orders of magnitude larger than the average open ocean emissions.


2016 ◽  
Author(s):  
M. J. Alvarado ◽  
C. R. Lonsdale ◽  
H. L. Macintyre ◽  
H. Bian ◽  
M. Chin ◽  
...  

Abstract. Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The four models are the NASA Global Modeling Initiative (GMI) Combo model, GEOS-Chem v9-02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT), and the Optical Properties of Aerosol and Clouds (OPAC v3.1) package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1) to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution is used, and examine the impact of different mixing rules for black carbon (BC) on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10–23 %, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GC-RT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding in situ size distribution information, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass fraction through out the aerosol size distribution. Using a core-shell mixing state in ASP overestimates aerosol absorption, especially for the fresh biomass burning aerosol measured in ARCTAS-B, suggesting the need for time-varying mixing states in future versions of ASP.


Toxics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 59 ◽  
Author(s):  
Jolanda Palmisani ◽  
Alessia Di Gilio ◽  
Laura Palmieri ◽  
Carmelo Abenavoli ◽  
Marco Famele ◽  
...  

The present study aims to evaluate the impact of e-cig second-hand aerosol on indoor air quality in terms of ultrafine particles (UFPs) and potential inhalation exposure levels of passive bystanders. E-cig second-hand aerosol characteristics in terms of UFPs number concentration and size distribution exhaled by two volunteers vaping 15 different e-liquids inside a 49 m3 room and comparison with tobacco smoke are discussed. High temporal resolution measurements were performed under natural ventilation conditions to simulate a realistic exposure scenario. Results showed a systematic increase in UFPs number concentration (part cm−3) related to a 20-min vaping session (from 6.56 × 103 to 4.01 × 104 part cm−3), although this was one up to two order of magnitude lower than that produced by one tobacco cigarette consumption (from 1.12 × 105 to 1.46 × 105 part cm−3). E-cig second-hand aerosol size distribution exhibits a bimodal behavior with modes at 10.8 and 29.4 nm in contrast with the unimodal typical size distribution of tobacco smoke with peak mode at 100 nm. In the size range 6–26 nm, particles concentration in e-cig second-hand aerosol were from 2- (Dp = 25.5 nm) to 3800-fold (Dp = 9.31 nm) higher than in tobacco smoke highlighting that particles exhaled by users and potentially inhaled by bystanders are nano-sized with high penetration capacity into human airways.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Genrik Mordas ◽  
Nina Prokopciuk ◽  
Steigvilė Byčenkienė ◽  
Jelena Andriejauskienė ◽  
Vidmantas Ulevicius

Applications of satellite remote sensing data combined with ground measurements and model simulation were applied to study aerosol optical properties as well as aerosol long-range transport under the impact of large scale circulation in the urban environment in Lithuania (Vilnius). Measurements included the light scattering coefficients at 3 wavelengths (450, 550, and 700 nm) measured with an integrating nephelometer and aerosol particle size distribution (0.5–12 μm) and number concentration (Dpa> 0.5 μm) registered by aerodynamic particle sizer. Particle number concentration and mean light scattering coefficient varied from relatively low values of 6.0 cm−3and 12.8 Mm−1associated with air masses passed over Atlantic Ocean to relatively high value of 119 cm−3and 276 Mm−1associated with South-Western air masses. Analysis shows such increase in the aerosol light scattering coefficient (276 Mm−1) during the 3rd of July 2012 was attributed to a major Sahara dust storm. Aerosol size distribution with pronounced coarse particles dominance was attributed to the presence of dust particles, while resuspended dust within the urban environment was not observed.


2003 ◽  
Vol 3 (3) ◽  
pp. 2783-2833 ◽  
Author(s):  
P. Tunved ◽  
H.-C. Hansson ◽  
M. Kulmala ◽  
P. Aalto ◽  
Y. Viisanen ◽  
...  

Abstract. Size distribution measurements performed at five different stations have been investigated during a one-year period between 01 June 2000 and 31 May 2001 with focus on diurnal, seasonal and geographical differences of size distribution properties. The stations involved cover a large geographical area ranging from the Finnish Lapland (67° N) down to southern Sweden (56° N) in the order Värriö, Pallas, Hyytiälä, Aspvreten and Vavihill. The shape of the size distribution is typically bimodal during winter with a larger fraction of accumulation mode particles compared to the other seasons. Highest Aitken mode concentration is found during summer and spring. The maximum of nucleation events occur during spring months. Nucleation events occur during other seasons as well, although not as frequently. Large differences were found between different categories of stations. Northerly located stations such as Pallas and Värriö presented well-separated Aitken and accumulation modes, while the two modes often overlap significantly at the two southernmost stations Vavihill and Aspvreten. A method to cluster trajectories was used to analyse the impact of long-range transport on the observed aerosol properties. Clusters of trajectories arriving from the continent were clearly associated with size distributions shifted towards the accumulation mode. This feature was more pronounced the further south the station was located. Marine- or Arctic-type clusters were associated with large variability in the nuclei size ranges. A quasi-lagrangian approach was used to investigate transport related changes in the aerosol properties. Typically, an increase in especially Aitken mode concentrations was observed when advection from the north occurs, i.e. allowing more continental influence on the aerosol when comparing the different measurement sites. When trajectory clusters arrive to the stations from SW, a gradual decrease in number concentration is experienced in all modes as latitude of measurement site increases.


Sign in / Sign up

Export Citation Format

Share Document