Sensitivity of dust radiative forcing to representation of aerosol size distribution in radiative transfer model

Author(s):  
Yiran Peng ◽  
Jian-Qi Zhao ◽  
Zhian Sun ◽  
Wenjie Zhao ◽  
Xiaodong Wei ◽  
...  
2021 ◽  
Author(s):  
Filippo Calì Quaglia ◽  
Daniela Meloni ◽  
Alcide Giorgio di Sarra ◽  
Tatiana Di Iorio ◽  
Virginia Ciardini ◽  
...  

<p>Extended and intense wildfires occurred in Northern Canada and, unexpectedly, on the Greenlandic West coast during summer 2017. The thick smoke plume emitted into the atmosphere was transported to the high Arctic, producing one of the largest impacts ever observed in the region. Evidence of Canadian and Greenlandic wildfires was recorded at the Thule High Arctic Atmospheric Observatory (THAAO, 76.5°N, 68.8°W, www.thuleatmos-it.it) by a suite of instruments managed by ENEA, INGV, Univ. of Florence, and NCAR. Ground-based observations of the radiation budget have allowed quantification of the surface radiative forcing at THAAO. </p><p>Excess biomass burning chemical tracers such as CO, HCN, H2CO, C2H6, and NH3 were  measured in the air column above Thule starting from August 19 until August 23. The aerosol optical depth (AOD) reached a peak value of about 0.9 on August 21, while an enhancement of wildfire compounds was  detected in PM10. The measured shortwave radiative forcing was -36.7 W/m2 at 78° solar zenith angle (SZA) for AOD=0.626.</p><p>MODTRAN6.0 radiative transfer model (Berk et al., 2014) was used to estimate the aerosol radiative effect and the heating rate profiles at 78° SZA. Measured temperature profiles, integrated water vapour, surface albedo, spectral AOD and aerosol extinction profiles from CALIOP onboard CALIPSO were used as model input. The peak  aerosol heating rate (+0.5 K/day) was  reached within the aerosol layer between 8 and 12 km, while the maximum radiative effect (-45.4 W/m2) is found at 3 km, below the largest aerosol layer.</p><p>The regional impact of the event that occurred on August 21 was investigated using a combination of atmospheric radiative transfer modelling with measurements of AOD and ground surface albedo from MODIS. The aerosol properties used in the radiative transfer model were constrained by in situ measurements from THAAO. Albedo data over the ocean have been obtained from Jin et al. (2004). Backward trajectories produced through HYSPLIT simulations (Stein et al., 2015) were also employed to trace biomass burning plumes.</p><p>The radiative forcing efficiency (RFE) over land and ocean was derived, finding values spanning from -3 W/m2 to -132 W/m2, depending on surface albedo and solar zenith angle. The fire plume covered a vast portion of the Arctic, with large values of the daily shortwave RF (< -50 W/m2) lasting for a few days. This large amount of aerosol is expected to influence cloud properties in the Arctic, producing significant indirect radiative effects.</p>


1995 ◽  
Vol 13 (4) ◽  
pp. 413-418 ◽  
Author(s):  
J. P. F. Fortuin ◽  
R. van Dorland ◽  
W. M. F. Wauben ◽  
H. Kelder

Abstract. With a radiative transfer model, assessments are made of the radiative forcing in northern mid-latitudes due to aircraft emissions up to 1990. Considered are the direct climate effects from the major combustion products carbon dioxide, nitrogen dioxide, water vapor and sulphur dioxide, as well as the indirect effect of ozone production from NOx emissions. Our study indicates a local radiative forcing at the tropopause which should be negative in summer (–0.5 to 0.0 W/m2) and either negative or positive in winter (–0.3 to 0.2 W/m2). To these values the indirect effect of contrails has to be added, which for the North Atlantic Flight Corridor covers the range –0.2 to 0.3 W/m2 in summer and 0.0 to 0.3 W/m2 in winter. Apart from optically dense non-aged contrails during summer, negative forcings are due to solar screening by sulphate aerosols. The major positive contributions come from contrails, stratospheric water vapor in winter and ozone in summer. The direct effect of NO2 is negligible and the contribution of CO2 is relatively small.


2005 ◽  
Vol 5 (4) ◽  
pp. 4507-4543 ◽  
Author(s):  
Y. Chen ◽  
J. E. Penner

Abstract. The IPCC has stressed the importance of producing unbiased estimates of the uncertainty in indirect aerosol forcing, in order to give policy makers as well as research managers an understanding of the most important aspects of climate change that require refinement. In this study, we use 3-D meteorological fields together with a radiative transfer model to examine the spatially-resolved uncertainty in estimates of the first indirect aerosol forcing. Uncertainties in the indirect forcing associated with aerosol and aerosol precursor emissions, aerosol mass concentrations from different chemical transport models, aerosol size distributions, the cloud droplet parameterization, the representation of the in-cloud updraft velocity, the relationship between effective radius and volume mean radius, cloud liquid water content, cloud fraction, and the change in the cloud drop single scattering albedo due to the presence of black carbon are calculated. The cloud fraction is found to be the most important source of uncertainty and causes an overestimation of the indirect forcing by almost 0.8 Wm−2 in the reference case. Uncertainties associated with aerosol and aerosol precursor emissions are the next most important uncertainty followed closely by uncertainties in the calculation of aerosol burden by chemical transport models and uncertainties in the representation of the aerosol size distribution (including the representation of the pre-industrial size distribution). There are significant regional differences in the uncertainty associated with the first indirect forcing with largest uncertainties in regions associated with the major biomass burning regions followed by uncertainties in Asia and Europe.


2013 ◽  
Vol 13 (1) ◽  
pp. 2415-2456 ◽  
Author(s):  
L. Zhang ◽  
Q. B. Li ◽  
Y. Gu ◽  
K. N. Liou ◽  
B. Meland

Abstract. Atmospheric mineral dust particles exert significant direct radiative forcings and are critical drivers of climate change. Here, we use the GEOS-Chem global three-dimensional chemical transport model (3-D CTM) coupled online with the Fu-Liou-Gu (FLG) radiative transfer model (RTM) to investigate the dust radiative forcing and heating rates based on different dust vertical profiles. The coupled calculations using a realistic dust vertical profile simulated by GEOS-Chem minimize the physical inconsistencies between 3-D CTM aerosol fields and the RTM. The use of GEOS-Chem simulated aerosol optical depth (AOD) vertical profiles as opposed to the FLG prescribed AOD vertical profiles leads to greater and more spatially heterogeneous changes in estimated radiative forcing and heating rate produced by dust. Both changes can be attributed to a different vertical structure between dust and non-dust source regions. Values of the dust AOD are much larger in the middle troposphere, though smaller at the surface when the GEOS-Chem simulated AOD vertical profile is used, which leads to a much stronger heating rate in the middle troposphere. Compared to FLG vertical profile, the use of GEOS-Chem vertical profile reduces the solar radiative forcing effect by about 0.2–0.25 W m−2 and the Infrared (IR) radiative forcing over the African and Asia dust source regions by about 0.1–0.2 W m−2. Differences in the solar radiative forcing at the surface between using the GEOS-Chem vertical profile and the FLG vertical profile are most significant over the Gobi desert with a value of about 1.1 W m−2. The radiative forcing effect of dust particles is more pronounced at the surface over the Sahara and Gobi deserts by using FLG vertical profile, while it is less significant over the downwind area of Eastern Asia.


2009 ◽  
Vol 9 (15) ◽  
pp. 5751-5758 ◽  
Author(s):  
T. Corti ◽  
T. Peter

Abstract. We present a simple model for the longwave and shortwave cloud radiative forcing based on the evaluation of extensive radiative transfer calculations, covering a global range of conditions. The simplicity of the model equations fosters the understanding on how clouds affect the Earth's energy balance. In comparison with results from a comprehensive radiative transfer model, the accuracy of our parameterization is typically better than 20%. We demonstrate the usefulness of our model using the example of tropical cirrus clouds. We conclude that possible applications for the model include the convenient estimate of cloud radiative forcing for a wide range of conditions, the evaluation of the sensitivity to changes in environmental conditions, and as a tool in education. An online version of the model is available at http://www.iac.ethz.ch/url/crf.


2015 ◽  
Vol 15 (19) ◽  
pp. 27405-27447
Author(s):  
M. S. Hammer ◽  
R. V. Martin ◽  
A. van Donkelaar ◽  
V. Buchard ◽  
O. Torres ◽  
...  

Abstract. Satellite observations of the Ultraviolet Aerosol Index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOS-Chem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (−0.32 to −0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The addition of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from −0.57 to −0.09 over West Africa in January, from −0.32 to +0.0002 over South Asia in April, from −0.97 to −0.22 over southern Africa in July, and from −0.50 to +0.33 over South America in September. The spectral dependence of absorption after adding BrC to the model is broadly consistent with reported observations for biomass burning aerosol, with Absorbing Angstrom Exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 35 % over South America in September, up to 25 % over southern Africa in July, and up to 20 % over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years, thus reducing the bias against observed values. We calculate the direct radiative effect (DRE) of BrC using GEOS-Chem coupled with the radiative transfer model RRTMG (GC-RT). Treating organic aerosol as containing absorbing BrC rather than as primarily scattering changes global annual mean all-sky top of atmosphere (TOA) DRE by +0.05 W m-2 and all-sky surface DRE by −0.06 W m-2. Regional changes of up to +0.5 W m-2 at TOA and down to −1 W m-2 at the surface are found over major biomass burning regions.


2009 ◽  
Vol 9 (2) ◽  
pp. 8541-8560 ◽  
Author(s):  
T. Corti ◽  
T. Peter

Abstract. We present a simple model for the longwave and shortwave cloud radiative forcing based on the evaluation of extensive radiative transfer calculations. The simplicity of the model equations fosters the understanding on how clouds affect the Earth's energy balance. In comparison with results from a comprehensive radiative transfer model, the accuracy of our parameterization is typically better than 20%. We demonstrate the usefulness of our model using the example of tropical cirrus clouds. We conclude that possible applications for the model include the fast estimate of cloud radiative forcing, the evaluation of the sensitivity to changes in environmental conditions, and as a tool in education.


2000 ◽  
Vol 39 (10) ◽  
pp. 1742-1753 ◽  
Author(s):  
Sundar A. Christopher ◽  
Xiang Li ◽  
Ronald M. Welch ◽  
Jeffrey S. Reid ◽  
Peter V. Hobbs ◽  
...  

Abstract Using in situ measurements of aerosol optical properties and ground-based measurements of aerosol optical thickness (τs) during the Smoke, Clouds and Radiation—Brazil (SCAR-B) experiment, a four-stream broadband radiative transfer model is used to estimate the downward shortwave irradiance (DSWI) and top-of-atmosphere (TOA) shortwave aerosol radiative forcing (SWARF) in cloud-free regions dominated by smoke from biomass burning in Brazil. The calculated DSWI values are compared with broadband pyranometer measurements made at the surface. The results show that, for two days when near-coincident measurements of single-scattering albedo ω0 and τs are available, the root-mean-square errors between the measured and calculated DSWI for daytime data are within 30 W m−2. For five days during SCAR-B, however, when assumptions about ω0 have to be made and also when τs was significantly higher, the differences can be as large as 100 W m−2. At TOA, the SWARF per unit optical thickness ranges from −20 to −60 W m−2 over four major ecosystems in South America. The results show that τs and ω0 are the two most important parameters that affect DSWI calculations. For SWARF values, surface albedos also play an important role. It is shown that ω0 must be known within 0.05 and τs at 0.55 μm must be known to within 0.1 to estimate DSWI to within 20 W m−2. The methodology described in this paper could serve as a potential strategy for determining DSWI values in the presence of aerosols. The wavelength dependence of τs and ω0 over the entire shortwave spectrum is needed to improve radiative transfer calculations. If global retrievals of DSWI and SWARF from satellite measurements are to be performed in the presence of biomass-burning aerosols on a routine basis, a concerted effort should be made to develop methodologies for estimating ω0 and τs from satellite and ground-based measurements.


2018 ◽  
Vol 19 (8) ◽  
pp. 1397-1409 ◽  
Author(s):  
S. McKenzie Skiles ◽  
Thomas H. Painter

Abstract It is well established that episodic deposition of dust on mountain snow reduces snow albedo and impacts snow hydrology in the western United States, particularly in the Colorado Rockies, which are headwaters for the Colorado River. Until recently the snow observations needed to physically quantify radiative forcing (RF) by dust on snow were lacking, and analysis of impacts used a semiempirical relationship between snow optical properties and observed surface reflectance. Here, we present a physically based daily time series of RF by dust and black carbon (BC) in snow at Senator Beck Basin Study Area, Colorado. Over the 2013 ablation season (March–May), a snow–aerosol radiative transfer model was forced with near daily measured snow property inputs (density, effective grain size, and dust/BC concentrations) and validated with coincidentally measured spectral albedo. Over the measurement period, instantaneous RF by dust and BC in snow ranged from 0.25 to 525 W m−2, with daily averages ranging from 0 to 347 W m−2. Dust dominated particulate mass, accounting for more than 90% of RF. The semiempirical RF values, which constitute the continuous long-term record, compared well to the physically based RF values; over the full time series, daily reported semiempirical RF values were 8 W m−2 higher on average, with a root-mean-square difference of 16 W m−2.


Sign in / Sign up

Export Citation Format

Share Document