scholarly journals Modeling lightning-NO<sub><i>x</i></sub> chemistry at sub-grid scale in a global chemical transport model

2015 ◽  
Vol 15 (23) ◽  
pp. 34091-34147 ◽  
Author(s):  
A. Gressent ◽  
B. Sauvage ◽  
D. Cariolle ◽  
M. Evans ◽  
M. Leriche ◽  
...  

Abstract. For the first time, a plume-in-grid approach is implemented in a chemical transport model (CTM) to parameterize the effects of the non-linear reactions occurring within high concentrated NOx plumes from lightning NOx emissions (LNOx) in the upper troposphere. It is characterized by a set of parameters including the plume lifetime, the effective reaction rate constant related to NOx-O3 chemical interactions and the fractions of NOx conversion into HNO3 within the plume. Parameter estimates were made using the DSMACC chemical box model, simple plume dispersion simulations and the mesoscale 3-D Meso-NH model. In order to assess the impact of the LNOx plume approach on the NOx and O3 distributions at large scale, simulations for the year 2006 were performed using the GEOS-Chem global model with a horizontal resolution of 2° × 2.5°. The implementation of the LNOx parameterization implies NOx and O3 decrease at large scale over the region characterized by a strong lightning activity (up to 25 and 8 %, respectively, over Central Africa in July) and a relative increase downwind of LNOx emissions (up to 18 and 2 % for NOx and O3, respectively, in July) are derived. The calculated variability of NOx and O3 mixing ratios around the mean value according to the known uncertainties on the parameter estimates is maximum over continental tropical regions with ΔNOx [−33.1; +29.7] ppt and ΔO3 [−1.56; +2.16] ppb, in January, and ΔNOx [−14.3; +21] ppt and ΔO3 [−1.18; +1.93] ppb, in July, mainly depending on the determination of the diffusion properties of the atmosphere and the initial NO mixing ratio injected by lightning. This approach allows (i) to reproduce a more realistic lightning NOx chemistry leading to better NOx and O3 distributions at the large scale and (ii) focus on other improvements to reduce remaining uncertainties from processes related to NOx chemistry in CTM.

2016 ◽  
Vol 16 (9) ◽  
pp. 5867-5889 ◽  
Author(s):  
Alicia Gressent ◽  
Bastien Sauvage ◽  
Daniel Cariolle ◽  
Mathew Evans ◽  
Maud Leriche ◽  
...  

Abstract. For the first time, a plume-in-grid approach is implemented in a chemical transport model (CTM) to parameterize the effects of the nonlinear reactions occurring within high concentrated NOx plumes from lightning NOx emissions (LNOx) in the upper troposphere. It is characterized by a set of parameters including the plume lifetime, the effective reaction rate constant related to NOx–O3 chemical interactions, and the fractions of NOx conversion into HNO3 within the plume. Parameter estimates were made using the Dynamical Simple Model of Atmospheric Chemical Complexity (DSMACC) box model, simple plume dispersion simulations, and the 3-D Meso-NH (non-hydrostatic mesoscale atmospheric model). In order to assess the impact of the LNOx plume approach on the NOx and O3 distributions on a large scale, simulations for the year 2006 were performed using the GEOS-Chem global model with a horizontal resolution of 2° × 2.5°. The implementation of the LNOx parameterization implies an NOx and O3 decrease on a large scale over the region characterized by a strong lightning activity (up to 25 and 8 %, respectively, over central Africa in July) and a relative increase downwind of LNOx emissions (up to 18 and 2 % for NOx and O3, respectively, in July). The calculated variability in NOx and O3 mixing ratios around the mean value according to the known uncertainties in the parameter estimates is at a maximum over continental tropical regions with ΔNOx [−33.1, +29.7] ppt and ΔO3 [−1.56, +2.16] ppb, in January, and ΔNOx [−14.3, +21] ppt and ΔO3 [−1.18, +1.93] ppb, in July, mainly depending on the determination of the diffusion properties of the atmosphere and the initial NO mixing ratio injected by lightning. This approach allows us (i) to reproduce a more realistic lightning NOx chemistry leading to better NOx and O3 distributions on the large scale and (ii) to focus on other improvements to reduce remaining uncertainties from processes related to NOx chemistry in CTM.


2011 ◽  
Vol 11 (18) ◽  
pp. 9887-9898 ◽  
Author(s):  
M. Rigby ◽  
A. J. Manning ◽  
R. G. Prinn

Abstract. We present a method for estimating emissions of long-lived trace gases from a sparse global network of high-frequency observatories, using both a global Eulerian chemical transport model and Lagrangian particle dispersion model. Emissions are derived in a single step after determining sensitivities of the observations to initial conditions, the high-resolution emissions field close to observation points, and larger regions further from the measurements. This method has the several advantages over inversions using one type of model alone, in that: high-resolution simulations can be carried out in limited domains close to the measurement sites, with lower resolution being used further from them; the influence of errors due to aggregation of emissions close to the measurement sites can be minimized; assumptions about boundary conditions to the Lagrangian model do not need to be made, since the entire emissions field is estimated; any combination of appropriate models can be used, with no code modification. Because the sensitivity to the entire emissions field is derived, the estimation can be carried out using traditional statistical methods without the need for multiple steps in the inversion. We demonstrate the utility of this approach by determining global SF6 emissions using measurements from the Advanced Global Atmospheric Gases Experiment (AGAGE) between 2007 and 2009. The global total and large-scale patterns of the derived emissions agree well with previous studies, whilst allowing emissions to be determined at higher resolution than has previously been possible, and improving the agreement between the modeled and observed mole fractions at some sites.


2005 ◽  
Vol 5 (6) ◽  
pp. 12373-12401
Author(s):  
G. Berthet ◽  
N. Huret ◽  
F. Lefèvre ◽  
G. Moreau ◽  
C. Robert ◽  
...  

Abstract. In this paper we study the impact of the modelling of N2O on the simulation of NO2 and HNO3 by comparing in situ vertical profiles measured at mid-latitudes with the results of the Reprobus 3-D CTM (Three-dimensional Chemical Transport Model) computed with the kinetic parameters from the JPL recommendation in 2002. The analysis of the measured in situ profile of N2O shows particular features indicating different air mass origins. The measured N2O, NO2 and HNO3 profiles are not satisfyingly reproduced by the CTM when computed using the current 6-hourly ECMWF operational analysis. Improving the simulation of N2O transport allows us to calculate quantities of NO2 and HNO3 in reasonable agreement with observations. This is achieved using 3-hourly winds obtained from ECMWF forecasts. The best agreement is obtained by constraining a one-dimensional version of the model with the observed N2O. This study shows that modelling the NOy partitioning with better accuracy relies at least on a correct simulation of N2O and thus of total NOy.


2013 ◽  
Vol 13 (8) ◽  
pp. 21455-21505
Author(s):  
E. Emili ◽  
B. Barret ◽  
S. Massart ◽  
E. Le Flochmoen ◽  
A. Piacentini ◽  
...  

Abstract. Accurate and temporally resolved fields of free-troposphere ozone are of major importance to quantify the intercontinental transport of pollution and the ozone radiative forcing. In this study we examine the impact of assimilating ozone observations from the Microwave Limb Sounder (MLS) and the Infrared Atmospheric Sounding Interferometer (IASI) in a global chemical transport model (MOdèle de Chimie Atmosphérique à Grande Échelle, MOCAGE). The assimilation of the two instruments is performed by means of a variational algorithm (4-D-VAR) and allows to constrain stratospheric and tropospheric ozone simultaneously. The analysis is first computed for the months of August and November 2008 and validated against ozone-sondes measurements to verify the presence of observations and model biases. It is found that the IASI Tropospheric Ozone Column (TOC, 1000–225 hPa) should be bias-corrected prior to assimilation and MLS lowermost level (215 hPa) excluded from the analysis. Furthermore, a longer analysis of 6 months (July–August 2008) showed that the combined assimilation of MLS and IASI is able to globally reduce the uncertainty (Root Mean Square Error, RMSE) of the modeled ozone columns from 30% to 15% in the Upper-Troposphere/Lower-Stratosphere (UTLS, 70–225 hPa) and from 25% to 20% in the free troposphere. The positive effect of assimilating IASI tropospheric observations is very significant at low latitudes (30° S–30° N), whereas it is not demonstrated at higher latitudes. Results are confirmed by a comparison with additional ozone datasets like the Measurements of OZone and wAter vapour by aIrbus in-service airCraft (MOZAIC) data, the Ozone Monitoring Instrument (OMI) total ozone columns and several high-altitude surface measurements. Finally, the analysis is found to be little sensitive to the assimilation parameters and the model chemical scheme, due to the high frequency of satellite observations compared to the average life-time of free-troposphere/low-stratosphere ozone.


2007 ◽  
Vol 7 (9) ◽  
pp. 2357-2369 ◽  
Author(s):  
W. Feng ◽  
M. P. Chipperfield ◽  
M. Dorf ◽  
K. Pfeilsticker ◽  
P. Ricaud

Abstract. We have used an off-line three-dimensional (3-D) chemical transport model (CTM) to study long-term changes in stratospheric O3. The model was run from 1977–2004 and forced by ECMWF ERA-40 and operational analyses. Model runs were performed to examine the impact of increasing halogens and additional stratospheric bromine from short-lived source gases. The analyses capture much of the observed interannual variability in column ozone, but there are also unrealistic features. In particular the ERA-40 analyses cause a large positive anomaly in northern hemisphere (NH) column O3 in the late 1980s. Also, the change from ERA-40 to operational winds at the start of 2002 introduces abrupt changes in some model fields (e.g. temperature, ozone) which affect analysis of trends. The model reproduces the observed column increase in NH mid-latitudes from the mid 1990s. Analysis of a run with fixed halogens shows that this increase is not due to a significant decrease in halogen-induced loss, i.e. is not an indication of recovery. The model predicts only a small decrease in halogen-induced loss after 1999. In the upper stratosphere, despite the modelled turnover of chlorine around 1999, O3 does not increase because of the effects of increasing ECMWF temperatures, decreasing modelled CH4 at this altitude, and abrupt changes in the SH temperatures at the end of the ERA-40 period. The impact of an additional 5 pptv stratospheric bromine from short-lived species decreases mid-latitude column O3 by about 10 DU. However, the impact on the modelled relative O3 anomaly is generally small except during periods of large volcanic loading.


2013 ◽  
Vol 13 (8) ◽  
pp. 4235-4251 ◽  
Author(s):  
R. H. Moore ◽  
V. A. Karydis ◽  
S. L. Capps ◽  
T. L. Lathem ◽  
A. Nenes

Abstract. We use the Global Modelling Initiative (GMI) chemical transport model with a cloud droplet parameterisation adjoint to quantify the sensitivity of cloud droplet number concentration to uncertainties in predicting CCN concentrations. Published CCN closure uncertainties for six different sets of simplifying compositional and mixing state assumptions are used as proxies for modelled CCN uncertainty arising from application of those scenarios. It is found that cloud droplet number concentrations (Nd) are fairly insensitive to the number concentration (Na) of aerosol which act as CCN over the continents (∂lnNd/∂lnNa ~10–30%), but the sensitivities exceed 70% in pristine regions such as the Alaskan Arctic and remote oceans. This means that CCN concentration uncertainties of 4–71% translate into only 1–23% uncertainty in cloud droplet number, on average. Since most of the anthropogenic indirect forcing is concentrated over the continents, this work shows that the application of Köhler theory and attendant simplifying assumptions in models is not a major source of uncertainty in predicting cloud droplet number or anthropogenic aerosol indirect forcing for the liquid, stratiform clouds simulated in these models. However, it does highlight the sensitivity of some remote areas to pollution brought into the region via long-range transport (e.g., biomass burning) or from seasonal biogenic sources (e.g., phytoplankton as a source of dimethylsulfide in the southern oceans). Since these transient processes are not captured well by the climatological emissions inventories employed by current large-scale models, the uncertainties in aerosol-cloud interactions during these events could be much larger than those uncovered here. This finding motivates additional measurements in these pristine regions, for which few observations exist, to quantify the impact (and associated uncertainty) of transient aerosol processes on cloud properties.


2006 ◽  
Vol 6 (6) ◽  
pp. 1599-1609 ◽  
Author(s):  
G. Berthet ◽  
N. Huret ◽  
F. Lefèvre ◽  
G. Moreau ◽  
C. Robert ◽  
...  

Abstract. In this paper we study the impact of the modelling of N2O on the simulation of NO2 and HNO3 by comparing in situ vertical profiles measured at mid-latitudes with the results of the Reprobus 3-D CTM (Three-dimensional Chemical Transport Model) computed with the kinetic parameters from the JPL recommendation in 2002. The analysis of the measured in situ profile of N2O shows particular features indicating different air mass origins. The measured N2O, NO2 and HNO3 profiles are not satisfyingly reproduced by the CTM when computed using the current 6-hourly ECMWF operational analysis. Improving the simulation of N2O transport allows us to calculate quantities of NO2 and HNO3 in reasonable agreement with observations. This is achieved using 3-hourly winds obtained from ECMWF forecasts. The best agreement is obtained by constraining a one-dimensional version of the model with the observed N2O. This study shows that the modelling of the NOy partitioning with better accuracy relies at least on a correct simulation of N2O and thus of total NOy.


2011 ◽  
Vol 11 (1) ◽  
pp. 2233-2262
Author(s):  
E. C. Browne ◽  
A. E. Perring ◽  
P. J. Wooldridge ◽  
E. Apel ◽  
S. R. Hall ◽  
...  

Abstract. Using measurements from the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) experiment, we show that methyl peroxy nitrate (CH3O2NO2) is present in concentrations of ~5–15 pptv in the springtime arctic upper troposphere. We investigate the regional and global effects of CH3O2NO2 by including its chemistry in the GEOS-CHEM 3-D global chemical transport model. We find that at temperatures below 240 K inclusion of CH3O2NO2 chemistry results in decreases of up to ~20% in NOx, ~20% in N2O5, ~5% in HNO3, ~2% in ozone, and increases in methyl hydrogen peroxide of up to ~14%. Larger changes are observed in biomass burning plumes lofted to high altitude. Additionally, by sequestering NOx at low temperatures, CH3O2NO2 decreases the cycling of HO2 to OH, resulting in a larger upper tropospheric HO2 to OH ratio. These results may impact some estimates of lightning NOx sources as well as help explain differences between models and measurements of upper tropospheric composition.


2020 ◽  
Author(s):  
Bo Zhang ◽  
Hongyu Liu ◽  
James H. Crawford ◽  
Gao Chen ◽  
T. Duncan Fairlie ◽  
...  

Abstract. Radon-222 (222Rn) is a short-lived radioactive gas naturally emitted from land surfaces, and has long been used to assess convective transport in atmospheric models. In this study, we simulate 222Rn using the GEOS-Chem chemical transport model to improve our understanding of 222Rn emissions and surface concentration seasonality, and characterize convective transport associated with two Goddard Earth Observing System (GEOS) meteorological products, MERRA and GEOS-FP. We evaluate four global 222Rn emission scenarios by comparing model results with observations at 51 surface sites. The default emission scenario in GEOS-Chem yields a moderate agreement with surface observations globally ( 80 % data within a factor of 2), and reasonable agreement in Asia (close to 70 %). Further constraints on 222Rn emissions would require additional concentration and emission flux observations in the central U.S., Canada, Africa, and Asia. We also compare and assess convective transport in model simulations driven by MERRA and GEOS-FP using observed 222Rn vertical profiles in northern mid-latitude summer, and from three short-term airborne campaigns. While simulations with both GEOS products are able to capture the observed vertical gradient of 222Rn concentrations in the lower troposphere (0–4 km), neither correctly represents the level of convective detrainment, resulting in biases in the middle and upper troposphere. Compared with GEOS-FP, MERRA leads to stronger convective transport of 222Rn, which is partially compensated by its weaker large-scale vertical advection, resulting in similar global vertical distributions of 222Rn concentrations between the two simulations. This has important implications for using chemical transport models to interpret the transport of other trace species when these GEOS products are used as driving meteorology.


Sign in / Sign up

Export Citation Format

Share Document