scholarly journals Utilization of O<sub>4</sub> slant column density to derive aerosol layer height from a spaceborne UV-visible hyperspectral sensor: sensitivity and case study

2015 ◽  
Vol 15 (6) ◽  
pp. 7933-7975 ◽  
Author(s):  
S. S. Park ◽  
J. Kim ◽  
H. Lee ◽  
O. Torres ◽  
K.-M. Lee ◽  
...  

Abstract. The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using simulated radiances by a radiative transfer model, Linearized Discrete Ordinate Radiative Transfer (LIDORT), and Differential Optical Absorption Spectroscopy (DOAS) technique. The sensitivities of the O4 SCDs to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4 SCD at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 414 m (16.5%), 564 m (22.4%), and 1343 m (52.5%) for absorbing, dust, and non-absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution type. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). The retrieved aerosol effective heights are lower by approximately 300 m (27 %) compared to those obtained from the ground-based LIDAR measurements.

2016 ◽  
Vol 16 (4) ◽  
pp. 1987-2006 ◽  
Author(s):  
Sang Seo Park ◽  
Jhoon Kim ◽  
Hanlim Lee ◽  
Omar Torres ◽  
Kwang-Mog Lee ◽  
...  

Abstract. The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 1040 molecules2 cm−5, to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 m for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 % of retrieved aerosol effective heights are within the error range of 1 km compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.


2019 ◽  
Vol 12 (12) ◽  
pp. 6619-6634 ◽  
Author(s):  
Swadhin Nanda ◽  
Martin de Graaf ◽  
J. Pepijn Veefkind ◽  
Mark ter Linden ◽  
Maarten Sneep ◽  
...  

Abstract. To retrieve aerosol properties from satellite measurements of the oxygen A-band in the near-infrared, a line-by-line radiative transfer model implementation requires a large number of calculations. These calculations severely restrict a retrieval algorithm's operational capability as it can take several minutes to retrieve the aerosol layer height for a single ground pixel. This paper proposes a forward modelling approach using artificial neural networks to speed up the retrieval algorithm. The forward model outputs are trained into a set of neural network models to completely replace line-by-line calculations in the operational processor. Results comparing the forward model to the neural network alternative show an encouraging outcome with good agreement between the two when they are applied to retrieval scenarios using both synthetic and real measured spectra from TROPOMI (TROPOspheric Monitoring Instrument) on board the European Space Agency (ESA) Sentinel-5 Precursor mission. With an enhancement of the computational speed by 3 orders of magnitude, TROPOMI's operational aerosol layer height processor is now able to retrieve aerosol layer heights well within operational capacity.


2019 ◽  
Author(s):  
Swadhin Nanda ◽  
Martin de Graaf ◽  
J. Pepijn Veefkind ◽  
Mark ter Linden ◽  
Maarten Sneep ◽  
...  

Abstract. To retrieve aerosol properties from satellite measurements of the oxygen A-band in the near infrared, a line-by-line radiative transfer model implementation requires a large number of calculations. These calculations severely restrict a retrieval algorithm's operational capability as it can take several minutes to retrieve aerosol layer height for a single ground pixel. This paper proposes a forward modeling approach using artificial neural networks to speed up the retrieval algorithm. The forward model outputs are trained into a set of neural network models to completely replace line-by-line calculations in the operational processor. Results of comparing the forward model to the neural network alternative show encouraging results with good agreements between the two when applied to retrieval scenarios using both synthetic and real measured spectra from TROPOMI (TROPOspheric Monitoring Instrument) on board the ESA Sentinel-5 Precursor mission. With an enhancement of the computational speed by three orders of magnitude, TROPOMI's operational aerosol layer height processor is now able to retrieve aerosol layer heights well within operational capacity.


2021 ◽  
Vol 13 (3) ◽  
pp. 434
Author(s):  
Ana del Águila ◽  
Dmitry S. Efremenko

Fast radiative transfer models (RTMs) are required to process a great amount of satellite-based atmospheric composition data. Specifically designed acceleration techniques can be incorporated in RTMs to simulate the reflected radiances with a fine spectral resolution, avoiding time-consuming computations on a fine resolution grid. In particular, in the cluster low-streams regression (CLSR) method, the computations on a fine resolution grid are performed by using the fast two-stream RTM, and then the spectra are corrected by using regression models between the two-stream and multi-stream RTMs. The performance enhancement due to such a scheme can be of about two orders of magnitude. In this paper, we consider a modification of the CLSR method (which is referred to as the double CLSR method), in which the single-scattering approximation is used for the computations on a fine resolution grid, while the two-stream spectra are computed by using the regression model between the two-stream RTM and the single-scattering approximation. Once the two-stream spectra are known, the CLSR method is applied the second time to restore the multi-stream spectra. Through a numerical analysis, it is shown that the double CLSR method yields an acceleration factor of about three orders of magnitude as compared to the reference multi-stream fine-resolution computations. The error of such an approach is below 0.05%. In addition, it is analysed how the CLSR method can be adopted for efficient computations for atmospheric scenarios containing aerosols. In particular, it is discussed how the precomputed data for clear sky conditions can be reused for computing the aerosol spectra in the framework of the CLSR method. The simulations are performed for the Hartley–Huggins, O2 A-, water vapour and CO2 weak absorption bands and five aerosol models from the optical properties of aerosols and clouds (OPAC) database.


2021 ◽  
Author(s):  
Filippo Calì Quaglia ◽  
Daniela Meloni ◽  
Alcide Giorgio di Sarra ◽  
Tatiana Di Iorio ◽  
Virginia Ciardini ◽  
...  

&lt;p&gt;Extended and intense wildfires occurred in Northern Canada and, unexpectedly, on the Greenlandic West coast during summer 2017. The thick smoke plume emitted into the atmosphere was transported to the high Arctic, producing one of the largest impacts ever observed in the region. Evidence of Canadian and Greenlandic wildfires was recorded at the Thule High Arctic Atmospheric Observatory (THAAO, 76.5&amp;#176;N, 68.8&amp;#176;W, www.thuleatmos-it.it) by a suite of instruments managed by ENEA, INGV, Univ. of Florence, and NCAR. Ground-based observations of the radiation budget have allowed quantification of the surface radiative forcing at THAAO.&amp;#160;&lt;/p&gt;&lt;p&gt;Excess biomass burning chemical tracers such as CO, HCN, H2CO, C2H6, and NH3 were&amp;#160; measured in the air column above Thule starting from August 19 until August 23. The aerosol optical depth (AOD) reached a peak value of about 0.9 on August 21, while an enhancement of wildfire compounds was&amp;#160; detected in PM10. The measured shortwave radiative forcing was -36.7 W/m2 at 78&amp;#176; solar zenith angle (SZA) for AOD=0.626.&lt;/p&gt;&lt;p&gt;MODTRAN6.0 radiative transfer model (Berk et al., 2014) was used to estimate the aerosol radiative effect and the heating rate profiles at 78&amp;#176; SZA. Measured temperature profiles, integrated water vapour, surface albedo, spectral AOD and aerosol extinction profiles from CALIOP onboard CALIPSO were used as model input. The peak&amp;#160; aerosol heating rate (+0.5 K/day) was&amp;#160; reached within the aerosol layer between 8 and 12 km, while the maximum radiative effect (-45.4 W/m2) is found at 3 km, below the largest aerosol layer.&lt;/p&gt;&lt;p&gt;The regional impact of the event that occurred on August 21 was investigated using a combination of atmospheric radiative transfer modelling with measurements of AOD and ground surface albedo from MODIS. The aerosol properties used in the radiative transfer model were constrained by in situ measurements from THAAO. Albedo data over the ocean have been obtained from Jin et al. (2004). Backward trajectories produced through HYSPLIT simulations (Stein et al., 2015) were also employed to trace biomass burning plumes.&lt;/p&gt;&lt;p&gt;The radiative forcing efficiency (RFE) over land and ocean was derived, finding values spanning from -3 W/m2 to -132 W/m2, depending on surface albedo and solar zenith angle. The fire plume covered a vast portion of the Arctic, with large values of the daily shortwave RF (&lt; -50 W/m2) lasting for a few days. This large amount of aerosol is expected to influence cloud properties in the Arctic, producing significant indirect radiative effects.&lt;/p&gt;


2021 ◽  
Author(s):  
Laura Gómez Martín ◽  
Daniel Toledo ◽  
Margarita Yela ◽  
Cristina Prados-Román ◽  
José Antonio Adame ◽  
...  

&lt;p&gt;&lt;span&gt;Ground-based zenith DOAS (Differential Optical Absorption Spectroscopy) measurements have been used to detect and estimate the altitude of PSCs over Belgrano II Antarctic station during the polar sunrise seasons of 2018 and 2019. The method used in this work studies the evolution of the color index (CI) during twilights. The CI has been defined here as the ratio of the recorded signal at 520 and 420 nm. In the presence of PSCs, the CI shows a maximum at a given solar zenith angle (SZA). The value of such SZA depends on the altitude of the PSC. By using a spherical Monte Carlo radiative transfer model (RTM), the method has been validated and a function relating the SZA of the CI maximum and the PSC altitude has been calculated. Model simulations also show that PSCs can be detected and their altitude can be estimated even in presence of optically thin tropospheric clouds or aerosols. Our results are in good agreement with the stratospheric temperature evolution obtained through the ERA5 data reanalysis from the global meteorological model ECMWF (European Centre for Medium Range Weather Forecasts) and the PSCs observations from CALIPSO (Cloud-Aerosol-Lidar and Infrared Pathfinder Satellite Observations).&lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;span&gt;The methodology used in this work could also be applied to foreseen and/or historical measurements obtained with ground-based spectrometers such e. g. the DOAS instruments dedicated to trace gas observation in Arctic and Antarctic sites. This would also allow to investigate the presence and long-term evolution of PSCs.&lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;span&gt;&lt;strong&gt;Keywords: &lt;/strong&gt;Polar stratospheric clouds; color index; radiative transfer model; visible spectroscopy.&lt;/span&gt;&lt;/p&gt;


2007 ◽  
Vol 20 (17) ◽  
pp. 4459-4475 ◽  
Author(s):  
C. J. Stubenrauch ◽  
F. Eddounia ◽  
J. M. Edwards ◽  
A. Macke

Abstract Combined simultaneous satellite observations are used to evaluate the performance of parameterizations of the microphysical and optical properties of cirrus clouds used for radiative flux computations in climate models. Atmospheric and cirrus properties retrieved from Television and Infrared Observation Satellite (TIROS-N) Operational Vertical Sounder (TOVS) observations are given as input to the radiative transfer model developed for the Met Office climate model to simulate radiative fluxes at the top of the atmosphere (TOA). Simulated cirrus shortwave (SW) albedos are then compared to those retrieved from collocated Scanner for Radiation Budget (ScaRaB) observations. For the retrieval, special care has been given to angular direction models. Three parameterizations of cirrus ice crystal optical properties are represented in the Met Office radiative transfer model. These parameterizations are based on different physical approximations and different hypotheses on crystal habit. One parameterization assumes pristine ice crystals and two ice crystal aggregates. By relating the cirrus ice water path (IWP) retrieved from the effective infrared emissivity to the cirrus SW albedo, differences between the parameterizations are amplified. This study shows that pristine crystals seem to be plausible only for cirrus with IWP less than 30 g m−2. For larger IWP, ice crystal aggregates lead to cirrus SW albedos in better agreement with the observations. The data also indicate that climate models should allow the cirrus effective ice crystal diameter (De) to increase with IWP, especially in the range up to 30 g m−2. For cirrus with IWP less than 20 g m−2, this would lead to SW albedos that are about 0.02 higher than the ones of a constant De of 55 μm.


2011 ◽  
Vol 11 (23) ◽  
pp. 12475-12498 ◽  
Author(s):  
J. D. Halla ◽  
T. Wagner ◽  
S. Beirle ◽  
J. R. Brook ◽  
K. L. Hayden ◽  
...  

Abstract. Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements were performed in a rural location of southwestern Ontario during the Border Air Quality and Meteorology Study. Slant column densities (SCDs) of NO2 and O4 were determined using the standard DOAS technique. Using a radiative transfer model and the O4 SCDs, aerosol optical depths were determined for clear sky conditions and compared to OMI, MODIS, AERONET, and local PM2.5 measurements. This aerosol information was input to a radiative transfer model to calculate NO2 air mass factors, which were fit to the measured NO2 SCDs to determine tropospheric vertical column densities (VCDs) of NO2. The method of determining NO2 VCDs in this way was validated for the first time by comparison to composite VCDs derived from aircraft and ground-based measurements of NO2. The new VCDs were compared to VCDs of NO2 determined via retrievals from the satellite instruments SCIAMACHY and OMI, for overlapping time periods. The satellite-derived VCDs were higher, with a mean bias of +0.5–0.9×1015 molec cm−2. This last finding is different from previous studies whereby MAX-DOAS geometric VCDs were higher than satellite determinations, albeit for urban areas with higher VCDs. An effective boundary layer height, BLHeff, is defined as the ratio of the tropospheric VCD and the ground level concentration of NO2. Variations of BLHeff can be linked to time of day, source region, stability of the atmosphere, and the presence or absence of elevated NOx sources. In particular, a case study is shown where a high VCD and BLHeff were observed when an elevated industrial plume of NOx and SO2 was fumigated to the surface as a lake breeze impacted the measurement site. High BLHeff values (~1.9 km) were observed during a regional smog event when high winds from the SW and high convection promoted mixing throughout the boundary layer. During this event, the regional line flux of NO2 through the region was estimated to be greater than 112 kg NO2 km−1 h−1.


2017 ◽  
Author(s):  
Swadhin Nanda ◽  
Martin de Graaf ◽  
Maarten Sneep ◽  
Johan F. de Haan ◽  
Piet Stammes ◽  
...  

Abstract. Retrieving aerosol optical thickness and aerosol layer height over a bright surface from measured top of atmosphere reflectance spectrum in the oxygen A-band is known to be challenging, often resulting in large errors. In certain atmospheric conditions and viewing geometries, a loss of sensitivity to aerosol optical thickness has been reported in literature. This loss of sensitivity has been attributed to a phenomenon known as critical surface albedo regime, which is a range of surface albedos for which the top of atmosphere reflectance has minimal sensitivity to aerosol optical thickness. This paper extends the concept of critical surface albedo for aerosol layer height retrievals in the oxygen A-band, and discusses its implications. The underlying physics are introduced by analysing top of atmosphere reflectance spectra obtained using a radiative transfer model. Furthermore, error analysis of the aerosol layer height retrieval algorithm are conducted over dark and bright surfaces to show the dependency on surface reflectance. The analysis shows that the information on aerosol layer height from atmospheric path contribution and the surface contribution to the top of atmosphere are opposite in sign – an increase in surface brightness results in a decrease in information content. In the case of aerosol optical thickness, these contributions are anti-correlated, leading to large retrieval errors in high surface albedo regimes. The consequence of this anti-correlation is demonstrated with measured spectra in the oxygen A-band from GOME-2A instrument on board the Metop-A satellite over the 2010 Russian wildfires incident.


2010 ◽  
Vol 3 (5) ◽  
pp. 1185-1203 ◽  
Author(s):  
Y. Zhou ◽  
D. Brunner ◽  
R. J. D. Spurr ◽  
K. F. Boersma ◽  
M. Sneep ◽  
...  

Abstract. Surface reflectance is a key parameter in satellite trace gas retrievals in the UV/visible range and in particular for the retrieval of nitrogen dioxide (NO2) vertical tropospheric columns (VTCs). Current operational retrievals rely on coarse-resolution reflectance data and do not account for the generally anisotropic properties of surface reflectance. Here we present a NO2 VTC retrieval that uses MODIS bi-directional reflectance distribution function (BRDF) data at high temporal (8 days) and spatial (1 km × 1 km) resolution in combination with the LIDORT radiative transfer model to account for the dependence of surface reflectance on viewing and illumination geometry. The method was applied to two years of NO2 observations from the Ozone Monitoring Instrument (OMI) over Europe. Due to its wide swath, OMI is particularly sensitive to BRDF effects. Using representative BRDF parameters for various land surfaces, we found that in July (low solar zenith angles) and November (high solar zenith angles) and for typical viewing geometries of OMI, differences between MODIS black-sky albedos and surface bi-directional reflectances are of the order of 0–10% and 0–40%, respectively, depending on the position of the OMI pixel within the swath. In the retrieval, black-sky albedo was treated as a Lambertian (isotropic) reflectance, while for BRDF effects we used the kernel-based approach in the MODIS BRDF product. Air Mass Factors were computed using the LIDORT radiative transfer model based on these surface reflectance conditions. Differences in NO2 VTCs based on the Lambertian and BRDF approaches were found to be of the order of 0–3% in July and 0–20% in November with the extreme values found at large viewing angles. The much larger differences in November are mainly due to stronger BRDF effects at higher solar zenith angles. To a smaller extent, they are also caused by the typically more pronounced maximum of the NO2 a priori profiles in the boundary layer during the cold season, which make the retrieval more sensitive to radiation changes near the surface. However, BRDF impacts vary considerably across Europe due to differences in land surface type and increasing solar zenith angles at higher latitude. Finally, we compare BRDF-based NO2 VTCs with those retrieved using the GOME/TOMS Lambertian equivalent reflectance (LER) data set. The relative differences are mostly below 15% in July but in November the NO2 VTCs from TOMS/GOME are lower by 20–60%. Our results indicate that the specific choice of albedo data set is even more important than accounting for surface BRDF effects, and this again demonstrates the strong requirement for more accurate surface reflectance data sets.


Sign in / Sign up

Export Citation Format

Share Document