scholarly journals Radiocarbon analysis in an Alpine ice core: record of anthropogenic and biogenic contributions to carbonaceous aerosols in the past (1650–1940)

2006 ◽  
Vol 6 (4) ◽  
pp. 5905-5931 ◽  
Author(s):  
T. M. Jenk ◽  
S. Szidat ◽  
M. Schwikowski ◽  
H. W. Gäggeler ◽  
S. Brütsch ◽  
...  

Abstract. Long-term concentration records of carbonaceous particles (CP) are of increasing interest in climate research due to their not yet completely understood effects on climate. Nevertheless, only poor data on their concentrations and sources in the past is available. We present a first long-term record of organic carbon (OC) and elemental carbon (EC) concentrations - the two main fractions of CP – along with the corresponding fraction of modern carbon (fM) derived from radiocarbon (14C) analysis. The combination of concentration measurements with 14C analysis of CP allows a distinction and quantification of natural, biogenic and anthropogenic fossil sources in the past. CP were extracted from an ice archive, with resulting carbon quantities in the microgram range. Analysis of 14C by accelerator mass spectrometry (AMS) was therefore highly demanding. We analysed 33 samples of 0.4 to 1 kg ice from a 150.5 m long ice core retrieved at Fiescherhorn glacier in December 2002 (46°33'3.2" N, 08°04'0.4'' E; 3900 m a.s.l.). Samples were taken from below the firn/ice transition down to bedrock, covering the time period 1650–1940 and thus the transition from the pre-industrial to the industrial era. Before 1800, OC was of pure biogenic origin with a mean concentration of 21±2 μg kg−1}. In 1940, OC concentration was more than a factor of 3 higher than this biogenic background, almost half of it originating from anthropogenic sources, i.e. from combustion of fossil fuels. The biogenic EC concentration was nearly constant over the examined time period with 6±1 μg kg−1. In 1940, the additional anthropogenic input of atmospheric EC was about 50 μg kg−1.

2006 ◽  
Vol 6 (12) ◽  
pp. 5381-5390 ◽  
Author(s):  
T. M. Jenk ◽  
S. Szidat ◽  
M. Schwikowski ◽  
H. W. Gäggeler ◽  
S. Brütsch ◽  
...  

Abstract. Long-term concentration records of carbonaceous particles (CP) are of increasing interest in climate research due to their not yet completely understood effects on climate. Nevertheless, only poor data on their concentrations and sources before the 20th century are available. We present a first long-term record of organic carbon (OC) and elemental carbon (EC) concentrations – the two main fractions of CP – along with the corresponding fraction of modern carbon (fM) derived from radiocarbon (14C) analysis in ice. This allows a distinction and quantification of natural (biogenic) and anthropogenic (fossil) sources in the past. CP were extracted from an ice archive, with resulting carbon quantities in the microgram range. Analysis of 14C by accelerator mass spectrometry (AMS) was therefore highly demanding. We analysed 33 samples of 0.4 to 1 kg ice from a 150.5 m long ice core retrieved at Fiescherhorn glacier in December 2002 (46°33'3.2" N, 08°04'0.4" E; 3900 m a.s.l.). Samples were taken from bedrock up to the firn/ice transition, covering the time period 1650–1940 and thus the transition from the pre-industrial to the industrial era. Before ~1850, OC was approaching a purely biogenic origin with a mean concentration of 24 μg kg−1 and a standard deviation of 7 μg kg−1. In 1940, OC concentration was about a factor of 3 higher than this biogenic background, almost half of it originating from anthropogenic sources, i.e. from combustion of fossil fuels. The biogenic EC concentration was nearly constant over the examined time period with 6 μg kg−1 and a standard deviation of 1 μg kg−1. In 1940, the additional anthropogenic input of atmospheric EC was about 50 μg kg−1.


1988 ◽  
Vol 10 ◽  
pp. 178-182 ◽  
Author(s):  
Lonnie G. Thompson ◽  
Wu Xiaoling ◽  
Ellen Mosley-Thompson ◽  
Xie Zichu

Results from the first glaciological investigation of the Dunde ice cap demonstrate that a long, highly temporally resolvable climatic ice-core record is preserved in this ice cap. Measurements of stratigraphy, microparticle concentrations, liquid conductivity, and oxygen-isotope ratios from three snow pits in 1984 suggest that the annual accumulation is approximately 200 mm (water equivalent). Measurement of microparticle concentrations and conductivities of pit samples collected in 1986 confirm the existence of annual dust layers and an annual accumulation rate of ∼200 mm/year over the past 5 years. Bore-hole temperatures of –5.4°C at 30 m indicate that the ice cap is polar. Mono-pulse radar depth determinations yield an average thickness of 140 m, which (coupled with the smooth bedrock topography and the current accumulation rate) suggest that the Dunde ice cap should contain at least a 3000 year climatic record. A drilling program to recover that record from this subtropical location is planned for 1987.


2018 ◽  
Vol 18 (16) ◽  
pp. 12345-12361 ◽  
Author(s):  
Christian M. Zdanowicz ◽  
Bernadette C. Proemse ◽  
Ross Edwards ◽  
Wang Feiteng ◽  
Chad M. Hogan ◽  
...  

Abstract. Black carbon aerosol (BC), which is emitted from natural and anthropogenic sources (e.g., wildfires, coal burning), can contribute to magnify climate warming at high latitudes by darkening snow- and ice-covered surfaces, and subsequently lowering their albedo. Therefore, modeling the atmospheric transport and deposition of BC to the Arctic is important, and historical archives of BC accumulation in polar ice can help to validate such modeling efforts. Here we present a > 250-year ice-core record of refractory BC (rBC) deposition on Devon ice cap, Canada, spanning the years from 1735 to 1992. This is the first such record ever developed from the Canadian Arctic. The estimated mean deposition flux of rBC on Devon ice cap for 1963–1990 is 0.2 mg m−2 a−1, which is at the low end of estimates from Greenland ice cores obtained using the same analytical method ( ∼ 0.1–4 mg m−2 a−1). The Devon ice cap rBC record also differs from the Greenland records in that it shows only a modest increase in rBC deposition during the 20th century. In the Greenland records a pronounced rise in rBC is observed from the 1880s to the 1910s, which is largely attributed to midlatitude coal burning emissions. The deposition of contaminants such as sulfate and lead increased on Devon ice cap in the 20th century but no concomitant rise in rBC is recorded in the ice. Part of the difference with Greenland could be due to local factors such as melt–freeze cycles on Devon ice cap that may limit the detection sensitivity of rBC analyses in melt-impacted core samples, and wind scouring of winter snow at the coring site. Air back-trajectory analyses also suggest that Devon ice cap receives BC from more distant North American and Eurasian sources than Greenland, and aerosol mixing and removal during long-range transport over the Arctic Ocean likely masks some of the specific BC source–receptor relationships. Findings from this study suggest that there could be a large variability in BC aerosol deposition across the Arctic region arising from different transport patterns. This variability needs to be accounted for when estimating the large-scale albedo lowering effect of BC deposition on Arctic snow/ice.


2002 ◽  
Vol 36 (11) ◽  
pp. 2303-2310 ◽  
Author(s):  
Paul F. Schuster ◽  
David P. Krabbenhoft ◽  
David L. Naftz ◽  
L. Dewayne Cecil ◽  
Mark L. Olson ◽  
...  

2006 ◽  
Vol 2 (6) ◽  
pp. 1051-1073 ◽  
Author(s):  
O. Solomina ◽  
G. Wiles ◽  
T. Shiraiwa ◽  
R. D’Arrigo

Abstract. Tree rings, ice cores and glacial geologic histories for the past several centuries offer an opportunity to characterize climate variability and to identify the key climate parameters forcing glacier expansions. A newly developed larch ring-width chronology is presented for Kamchatka that is sensitive to past summer temperature variability. This record provides the basis to compare with other proxy records of inferred temperature and precipitation change from ice core and glacier records, and to characterize climate for the region over the past 400 years. Individual low growth years in the larch record are associated with several known and proposed volcanic events that have been observed in other proxy records from the Northern Hemisphere. Comparison of the tree-rings with an ice core record of melt feature index for Kamchatka's Ushkovsky volcano confirms a 1–3 year dating accuracy for this ice core series over the late 18th to 20th centuries. Decadal variations of low summer temperatures (tree-ring record) and high annual precipitation (ice core record) are broadly consistent with intervals of positive mass balance measured and estimated at several glaciers, and with moraine building, provides a basis to interpret geologic glacier records.


10 Be is produced in a similar way as 14 C by the interaction of cosmic radiation with the nuclei in the atmosphere. Assuming that the 10 Be and 14 C variation are proportional and considering the different behaviour in the Earth system, the 10 Be concentrations in ice cores can be compared with the 14 C variations in tree rings. A high correlation is found for the short-term variations ( 14 C-Suess-wiggles). They reflect with a high probability production rate variations. More problematic is the interpretation of the long-term trends of 14 C and 10 Be. Several explanations are discussed. The reconstructed CO 2 concentrations in ice cores indicate a rather constant value (280 ± 10 p.p.m. by volume) during the past few millenia. Measurements on the ice core from Byrd Station, Antarctica, during the period 9000 to 6000 years BP indicate a decrease that might be explained by the extraction of CO 2 from the atmosphere-ocean system to build the terrestrial biomass pool during the climatic optimum.


Nature ◽  
1986 ◽  
Vol 324 (6094) ◽  
pp. 237-238 ◽  
Author(s):  
H. Friedli ◽  
H. Lötscher ◽  
H. Oeschger ◽  
U. Siegenthaler ◽  
B. Stauffer

2017 ◽  
Author(s):  
Christian M. Zdanowicz ◽  
Bernadette C. Proemse ◽  
Ross Edwards ◽  
Wang Feiteng ◽  
Chad M. Hogan ◽  
...  

Abstract. Black carbon aerosol (BC) emitted from natural and anthropogenic sources (e.g., wildfires, coal burning) can contribute to magnify climate warming at high latitudes by darkening snow- and ice-covered surfaces, thus lowering their albedo. Modeling the atmospheric transport and deposition of BC to the Arctic is therefore important, and historical archives of BC accumulation in polar ice can help to validate such modeling efforts. Here we present a 190-year ice-core record of refractory BC (rBC) deposition on Devon ice cap, Canada, spanning calendar years 1810–1990, the first such record ever developed from the Canadian Arctic. The estimated mean deposition flux of rBC on Devon ice cap for 1963–1990 is 0.2 mg m−2 a−1, which is low compared to most Greenland ice-core sites over the same period. The Devon ice cap rBC record also differs from existing Greenland records in that it shows no evidence of a substantial increase in rBC deposition during the early-mid 20th century, which, for Greenland, has been attributed to mid-latitude coal burning emissions. The deposition of other contaminants such as sulfate and Pb increased on Devon ice cap in the 20th century but without a concomitant rise in rBC. Part of the difference with Greenland may be due to local factors such as wind scouring of winter snow at the coring site on Devon ice cap. Air back-trajectory analyses also suggest that Devon ice cap receives BC from more distant North American and Eurasian sources than Greenland, and aerosol mixing and removal during long-range transport over the Arctic Ocean likely masks some of the specific BC source-receptor relationships. Findings from this study underscore the large variability in BC aerosol deposition across the Arctic region that may arise from different transport patterns. This variability needs to be accounted for when estimating the large-scale albedo lowering effect of BC deposition on Arctic snow/ice.


1994 ◽  
Vol 81 (11) ◽  
pp. 502-505 ◽  
Author(s):  
K. Kawamura ◽  
I. Suzuki ◽  
Y. Fujii ◽  
O. Watanabe

Sign in / Sign up

Export Citation Format

Share Document