scholarly journals Hygroscopic properties of ultrafine aerosol particles in the boreal forest: diurnal variation, solubility and the influence of sulfuric acid

2006 ◽  
Vol 6 (5) ◽  
pp. 9937-9965
Author(s):  
M. Ehn ◽  
T. Petäjä ◽  
H. Aufmhoff ◽  
P. Aalto ◽  
K. Hämeri ◽  
...  

Abstract. Freshly formed atmospheric aerosol particles are neither large enough to efficiently scatter incoming solar radiation nor able to act as cloud condensation nuclei. As the particles grow larger, their hygroscopicity determines the limiting size after which they are important in both of the aforementioned processes. The condensing species resulting in growth alter the hygroscopicity of the particles. We have measured hygroscopic growth of aerosol particles present in a boreal forest, along with the very hygroscopic atmospheric trace gas sulfuric acid. The focus was on days with new particle formation by nucleation. The measured hygroscopic growth factors (GF) correlated positively with gaseous phase sulfuric acid concentrations. This correlation had a strong size dependency; the smaller the particle, the more condensing sulfuric acid is bound to alter the GF due to initially smaller mass. In addition, water uptake of nucleation mode particles was monitored during new particle formation events and followed during their growth to Aitken mode sizes. As the modal diameter increased, the solubility of the particles decreased. This indicated that initially more hygroscopic particles transformed into less hygroscopic or even hydrophobic particles. A similar behavior was seen also during days with no particle formation, with GF decreasing during the evenings and increasing during early morning. This can be tentatively explained by day- and nighttime differences in the hygroscopicity of condensable vapors.

2007 ◽  
Vol 7 (1) ◽  
pp. 211-222 ◽  
Author(s):  
M. Ehn ◽  
T. Petäjä ◽  
H. Aufmhoff ◽  
P. Aalto ◽  
K. Hämeri ◽  
...  

Abstract. The hygroscopic growth of aerosol particles present in a boreal forest was measured at a relative humidity of 88%. Simultaneously the gas phase concentration of sulfuric acid, a very hygroscopic compound, was monitored. The focus was mainly on days with new particle formation by nucleation. The measured hygroscopic growth factors (GF) correlated positively with the gaseous phase sulfuric acid concentrations. The smaller the particles, the stronger the correlation, with r=0.20 for 50 nm and r=0.50 for 10 nm particles. The increase in GF due to condensing sulfuric acid is expected to be larger for particles with initially smaller masses. During new particle formation, the changes in solubility of the new particles were calculated during their growth to Aitken mode sizes. As the modal diameter increased, the solubility of the particles decreased. This indicated that the initial particle growth was due to more hygroscopic compounds, whereas the later growth during the evening and night was mainly caused by less hygroscopic or even hydrophobic compounds. For all the measured sizes, a diurnal variation in GF was observed both during days with and without particle formation. The GF was lowest at around midnight, with a mean value of 1.12–1.24 depending on particle size and if new particle formation occurred during the day, and increased to 1.25–1.34 around noon. This can be tentatively explained by day- and nighttime gas-phase chemistry; different vapors will be present depending on the time of day, and through condensation these compounds will alter the hygroscopic properties of the particles in different ways.


2011 ◽  
Vol 11 (24) ◽  
pp. 13269-13285 ◽  
Author(s):  
S.-L. Sihto ◽  
J. Mikkilä ◽  
J. Vanhanen ◽  
M. Ehn ◽  
L. Liao ◽  
...  

Abstract. As a part of EUCAARI activities, the annual cycle of cloud condensation nuclei (CCN) concentrations and critical diameter for cloud droplet activation as a function of supersaturation were measured using a CCN counter and a HTDMA (hygroscopicity tandem differential mobility analyzer) at SMEAR II station, Hyytiälä, Finland. The critical diameters for CCN activation were estimated from (i) the measured CCN concentration and particle size distribution data, and (ii) the hygroscopic growth factors by applying κ-Köhler theory, in both cases assuming an internally mixed aerosol. The critical diameters derived by these two methods were in good agreement with each other. The effect of new particle formation on the diurnal variation of CCN concentration and critical diameters was studied. New particle formation was observed to increase the CCN concentrations by 70–110%, depending on the supersaturation level. The average value for the κ-parameter determined from hygroscopicity measurements was κ = 0.18 and it predicted well the CCN activation in boreal forest conditions in Hyytiälä. The derived critical diameters and κ-parameter confirm earlier findings with other methods, that aerosol particles at CCN sizes in Hyytiälä are mostly organic, but contain also more hygrosopic, probably inorganic salts like ammonium sulphate, making the particles more CCN active than pure secondary organic aerosol.


2018 ◽  
Vol 4 (11) ◽  
pp. eaat9744 ◽  
Author(s):  
T. Jokinen ◽  
M. Sipilä ◽  
J. Kontkanen ◽  
V. Vakkari ◽  
P. Tisler ◽  
...  

Formation of new aerosol particles from trace gases is a major source of cloud condensation nuclei (CCN) in the global atmosphere, with potentially large effects on cloud optical properties and Earth’s radiative balance. Controlled laboratory experiments have resolved, in detail, the different nucleation pathways likely responsible for atmospheric new particle formation, yet very little is known from field studies about the molecular steps and compounds involved in different regions of the atmosphere. The scarcity of primary particle sources makes secondary aerosol formation particularly important in the Antarctic atmosphere. Here, we report on the observation of ion-induced nucleation of sulfuric acid and ammonia—a process experimentally investigated by the CERN CLOUD experiment—as a major source of secondary aerosol particles over coastal Antarctica. We further show that measured high sulfuric acid concentrations, exceeding 107 molecules cm−3, are sufficient to explain the observed new particle growth rates. Our findings show that ion-induced nucleation is the dominant particle formation mechanism, implying that galactic cosmic radiation plays a key role in new particle formation in the pristine Antarctic atmosphere.


2010 ◽  
Vol 10 (11) ◽  
pp. 28231-28272 ◽  
Author(s):  
S.-L. Sihto ◽  
J. Mikkilä ◽  
J. Vanhanen ◽  
M. Ehn ◽  
L. Liao ◽  
...  

Abstract. As a part of EUCAARI activities, the annual cycle of cloud condensation nuclei (CCN) concentrations and critical diameter for cloud droplet activation as a function of supersaturation were measured using a CCN counter and a HTDMA (hygroscopic tandem DMA) at SMEAR II station, Hyytiälä, Finland. The critical diameters for cloud droplet activation were estimated from (i) the CCN concentration and particle size distribution data, and (ii) the hygroscopic growth factors by applying κ-Köhler theory. The critical diameters derived by these two methods were in good agreement with each other. The effect of new particle formation on the diurnal variation of CCN concentration and critical diameters was studied. New particle formation was observed to increase the CCN concentrations by 70–110%, depending on the supersaturation level. The average value for the κ-parameter determined from hygroscopicity measurements was κ = 0.18 and it predicted well the CCN activation in Hyytiälä boreal forest conditions. The derived critical diameters and κ-parameter indicate that aerosol particles at CCN sizes in Hyytiälä are mostly organic, but contain also more soluble, probably inorganic salts like ammonium sulphate, making the particles more CCN active than pure secondary organic aerosol.


2018 ◽  
Vol 18 (16) ◽  
pp. 11779-11791 ◽  
Author(s):  
Ximeng Qi ◽  
Aijun Ding ◽  
Pontus Roldin ◽  
Zhengning Xu ◽  
Putian Zhou ◽  
...  

Abstract. Highly oxygenated multifunctional compounds (HOMs) play a key role in new particle formation (NPF), but their quantitative roles in different environments of the globe have not been well studied yet. Frequent NPF events were observed at two “flagship” stations under different environmental conditions, i.e. a remote boreal forest site (SMEAR II) in Finland and a suburban site (SORPES) in polluted eastern China. The averaged formation rate of 6 nm particles and the growth rate of 6–30 nm particles were 0.3 cm−3 s−1 and 4.5 nm h−1 at SMEAR II compared to 2.3 cm−3 s−1 and 8.7 nm h−1 at SORPES, respectively. To explore the differences of NPF at the two stations, the HOM concentrations and NPF events at two sites were simulated with the MALTE-BOX model, and their roles in NPF and particle growth in the two distinctly different environments are discussed. The model provides an acceptable agreement between the simulated and measured concentrations of sulfuric acid and HOMs at SMEAR II. The sulfuric acid and HOM organonitrate concentrations are significantly higher but other HOM monomers and dimers from monoterpene oxidation are lower at SORPES compared to SMEAR II. The model simulates the NPF events at SMEAR II with a good agreement but underestimates the growth of new particles at SORPES, indicating a dominant role of anthropogenic processes in the polluted environment. HOMs from monoterpene oxidation dominate the growth of ultrafine particles at SMEAR II while sulfuric acid and HOMs from aromatics oxidation play a more important role in particle growth. This study highlights the distinct roles of sulfuric acid and HOMs in NPF and particle growth in different environmental conditions and suggests the need for molecular-scale measurements in improving the understanding of NPF mechanisms in polluted areas like eastern China.


2021 ◽  
Author(s):  
Maija Peltola ◽  
Manon Rocco ◽  
Neill Barr ◽  
Erin Dunne ◽  
James Harnwell ◽  
...  

<p>Even though oceans cover over 70% of the Earth’s surface, the ways in which oceans interact with climate are not fully known. Marine micro-organisms such as phytoplankton can play an important role in regulating climate by releasing different chemical species into air. In air these chemical species can react and form new aerosol particles. If grown to large enough sizes, aerosols can influence climate by acting as cloud condensation nuclei which influence the formation and properties of clouds. Even though a connection of marine biology and climate through aerosol formation was first proposed already over 30 years ago, the processes related to this connection are still uncertain.</p><p>To unravel how seawater properties affect aerosol formation and to identify which chemical species are responsible for aerosol formation, we built two Air-Sea-Interaction Tanks (ASIT) that isolate 1000 l of seawater and 1000 l of air directly above the water. The used seawater was collected from different locations during a ship campaign on board the R/V Tangaroa in the South West Pacific Ocean, close to Chatham Rise, east of New Zealand. Seawater from one location was kept in the tanks for 2-3 days and then changed. By using seawater collected from different locations, we could obtain water with different biological populations. To monitor the seawater, we took daily samples to determine its chemical and biological properties.</p><p>The air in the tanks was continuously flushed with particle filtered air. This way the air had on average 40 min to interact with the seawater surface before being sampled. Our air sampling was continuous and consisted of aerosol and air chemistry measurements. The instrumentation included measurements of aerosol number concentration from 1 to 500 nm and  chemical species ranging from ozone and sulphur dioxide to volatile organic compounds and chemical composition of molecular clusters.</p><p>Joining the seawater and atmospheric data together can give us an idea of what chemical species are emitted from the water into the atmosphere and whether these species can form new aerosol particles. Our preliminary results show a small number of particles in the freshly nucleated size range of 1-3 nm in the ASIT headspaces, indicating that new aerosol particles can form in the ASIT headspaces. In this presentation, we will also explore which chemical species could be responsible for aerosol formation and which plankton groups could be related to the emissions of these species. Combining these results with ambient data and modelling work can shed light on how important new particle formation from marine sources is for climate.</p><p>Acknowledgements: Sea2Cloud project is funded by European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 771369).</p>


2020 ◽  
Vol 20 (10) ◽  
pp. 5911-5922 ◽  
Author(s):  
Hing Cho Cheung ◽  
Charles Chung-Kuang Chou ◽  
Celine Siu Lan Lee ◽  
Wei-Chen Kuo ◽  
Shuenn-Chin Chang

Abstract. The chemical composition of fine particulate matter (PM2.5), the size distribution and number concentration of aerosol particles (NCN), and the number concentration of cloud condensation nuclei (NCCN) were measured at the northern tip of Taiwan during an intensive observation experiment from April 2017 to March 2018. The parameters of aerosol hygroscopicity (i.e., activation ratio, activation diameter and kappa of CCN) were retrieved from the measurements. Significant variations were found in the hygroscopicity of aerosols (kappa – κ – of 0.18–0.56, for water vapor supersaturation – SS – of 0.12 %–0.80 %), which were subject to various pollution sources, including aged air pollutants originating in eastern and northern China and transported by the Asian continental outflows and fresh particles emitted from local sources and distributed by land–sea breeze circulations as well as produced by processes of new particle formation (NPF). Cluster analysis was applied to the back trajectories of air masses to investigate their respective source regions. The results showed that aerosols associated with Asian continental outflows were characterized by lower NCN and NCCN values and by higher kappa values of CCN, whereas higher NCN and NCCN values with lower kappa values of CCN were observed in the aerosols associated with local air masses. Besides, it was revealed that the kappa value of CCN exhibited a decrease during the early stage of an event of new particle formation, which turned to an increasing trend over the later period. The distinct features in the hygroscopicity of aerosols were found to be consistent with the characteristics in the chemical composition of PM2.5. This study has depicted a clear seasonal characteristic of hygroscopicity and CCN activity under the influence of a complex mixture of pollutants from different regional and/or local pollution sources. Nevertheless, the mixing state and chemical composition of the aerosols critically influence the aerosol hygroscopicity, and further investigations are necessary to elucidate the atmospheric processing involved in the CCN activation in coastal areas.


2018 ◽  
Author(s):  
Jaeseok Kim ◽  
Young Jun Yoon ◽  
Yeontae Gim ◽  
Jin Hee Choi ◽  
Hyo Jin Kang ◽  
...  

Abstract. The physical characteristics of aerosol particles during a particle burst observed at King Sejong Station in Antarctic Peninsula from March 2009 to December 2016 were analyzed. This study focuses on the seasonal variation in parameters related to particle formation such as the occurrence, formation rate (FR) and growth rate (GR), condensation sink (CS), and source rate of condensable vapor. The number concentrations during new particle formation (NPF) events varied from 1707 cm−3 to 83 120 cm−3, with an average of 20 649 ± 9290 cm−3, and the duration of the NPF events ranged from 0.6 h to 14.4 h, with a mean of 4.6 ± 1.5 h. The NPF event dominantly occurred during austral summer period (~ 72 %). The mean values of FR and GR of the aerosol particles were 2.79 ± 1.05 cm−3 s−1 and 0.68 ± 0.27 nm h−1, respectively showing enhanced rates in the summer season. The mean value of FR at King Sejong Station was higher than that at other sites in Antarctica, at 0.002–0.3 cm−3 s−1, while those of growth rates was relatively similar results observed by precious studies, at 0.4~4.3 nm h−1. The average values of CS and source rate of condensable vapor were (6.04 ± 2.74) × 10−3 s−1 and (5.19 ± 3.51) × 104 cm−3 s−1, respectively. The contribution of particle formation to cloud condensation nuclei (CCN) concentration was also investigated. The CCN concentration during the NPF period increased approximately 9 % compared with the background concentration. In addition, the effects of the origin and pathway of air masses on the characteristics of aerosol particles during a NPF event were determined. The FRs were similar regardless of the origin and pathway, whereas the GRs of particles originating from the Antarctic Peninsula and the Bellingshausen Sea, at 0.77 ± 0.25 nm h−1 and 0.76 ± 0.30 nm h−1, respectively, were higher than those of particles originating from the Weddell Sea (0.41 ± 0.15 nm h−1).


2021 ◽  
Author(s):  
Sihui Jiang ◽  
Fang Zhang ◽  
Jingye Ren ◽  
Lu Chen ◽  
Xing Yan ◽  
...  

Abstract. New particle formation (NPF) is a large source of cloud condensation nuclei (CCN) and cloud droplet in the troposphere. In this study, we quantified the contribution of NPF to cloud droplet number concentration (CDNC, or Nd) at typical updraft velocities (V) in clouds using a field campaign data of aerosol number size distribution and chemical composition observed on May 25–June 18, 2017 in urban Beijing. We show that the NPF drives the variations of CCN and cloud droplet and increases Nd by 30–33 % at V = 0.3–3 m s−1 in urban atmosphere. A markedly reduction in Nd is observed due to water vapor competition with consideration of actual environmental updraft velocity, decreasing by 11.8 ± 5.0 % at V = 3 m s−1 and 19.0 ± 4.5 % at V = 0.3 m s−1 compared to that from a prescribed supersaturation. The effect of water vapor competition becomes smaller at larger V that can provide more sufficient water vapor. Essentially, water vapor competition led to the reduction in Nd by decreasing the environmental maximum supersaturation (Smax) for the activation of aerosol particles. It is shown that Smax was decreased by 14.5–11.7 % for V = 0.3–3 m s−1. Particularly, the largest suppression of cloud droplet formation due to the water vapor competition is presented at extremely high aerosol particle number concentrations. As a result, although a larger increase of CCN-size particles by NPF event is derived on clean NPF day when pre-existing background aerosol particles are very low, there is no large discrepancy in the enhancement of Nd by NPF between the clean and polluted NPF day. We finally show a considerable impact of the primary sources when evaluating the NPF contribution to cloud droplet based on a case study. Our study highlights the importance of fully consideration of both the environmental meteorological conditions and multiple sources (i.e. secondary and primary) to evaluate the NPF effect on clouds and the associated climate effects in polluted regions.


2021 ◽  
Author(s):  
Anastasiia Demakova ◽  
Olga Garmash ◽  
Ekaterina Ezhova ◽  
Mikhail Arshinov ◽  
Denis Davydov ◽  
...  

<p>New Particle Formation (NPF) is a process in which a large number of particles is formed in the atmosphere via gas-to-particle conversion. Previous research shows the important role of formation of new particles for atmosphere, clouds and climate (Kerminen, V.-M. et al. 2018).</p><p>              There exist measurements from different parts of the world which show that NPF is happening worldwide (Kerminen, V.-M. et al. 2018). Measurements at SMEAR II station in Hyytiälä, Finland (Hari P. and Kulmala M., 2005), show that NPF is a common process in Finland’s boreal forests. However, measurements at Zotto station in Siberia, Russia, show that NPF events are very rare in that area (Wiedensohler A. et al., 2018). Measurements in Siberian boreal forests are sparse. We have conducted new measurements at Fonovaya station near Tomsk (Siberia, Russia) using Neutral cluster Air Ion Spectrometer (NAIS), Particle Size Magnifier (PSM), Differential Mobility Particle Sizer (DMPS) and the Atmospheric Pressure interface Time-Of-Flight mass spectrometer (APi-TOF). Those instruments measure aerosol particle number size distribution (NAIS, DMPS), ion number size distribution (NAIS), size distribution of small particles (PSM) and chemical composition of aerosol particles (APi-TOF). The novelty of this work is that such complex measurements have not been done in Siberia before.</p><p>              Here we report the first results of our research on NPF phenomenon in Siberian boreal forest. We present detailed statistics of NPF events, as well as formation rates (J) and growth rates (GR) of aerosol particles. The results from Fonovaya station are compared with those from SMEAR II station and from SMEAR Estonia station in Järvselja, Estonia.</p><p>               </p><p> </p><p> </p><p>Literature</p><ul><li>[1] Kerminen V.-M. et al. “Atmospheric new particle formation and growth: review of field observations”. In: Environmental Research Letters 10 (2018), p. 103003.</li> <li>[2] Wiedensohler A. et al. “Infrequent new particle formation over the remote boreal forest of Siberia”. In: Atmospheric Environment 200 (2019), pp. 167–169.</li> <li>[3] Dada L. et al. “Long-term analysis of clear-sky new particle formation events and nonevents in Hyytiälä”. In: Atmospheric Chemistry and Physics 10 (2017), pp. 6227–6241.</li> </ul><p> </p>


Sign in / Sign up

Export Citation Format

Share Document