scholarly journals Seasonal variation of ozone deposition to a tropical rain forest in southwest Amazonia

2007 ◽  
Vol 7 (3) ◽  
pp. 7399-7450 ◽  
Author(s):  
U. Rummel ◽  
C. Ammann ◽  
G. A. Kirkman ◽  
M. A. L. Moura ◽  
T. Foken ◽  
...  

Abstract. Within the project EUropean Studies on Trace gases and Atmospheric CHemistry as a contribution to Large-scale Biosphere–atmosphere experiment in Amazonia (LBA-EUSTACH), we performed tower-based eddy covariance measurements of O3 flux above an Amazonian primary rain forest at the end of the wet and dry seasons. Ozone deposition revealed distinct seasonal differences in the magnitude and diel variation. In the wet season, the rain forest was an effective O3 sink with a mean daytime (midday) maximum deposition velocity of 2.3 cm s−1, and a corresponding O3 flux of –11 nmol m−2 s−1. At the end of the dry season, the ozone mixing ratio was about four times higher (up to maximum values of 80 ppb) than in the wet season, as a consequence of strong regional biomass burning activity. However, the typical maximum daytime deposition flux was very similar to the wet season. This results from a strong limitation of daytime O3 deposition due to reduced plant stomatal aperture as a response to large values of the specific humidity deficit. As a result, the average midday deposition velocity in the dry burning season was only 0.5 cm s−1. The large diel ozone variation caused large canopy storage effects that masked the true diel variation of ozone deposition mechanisms in the measured eddy covariance flux, and for which corrections had to be made. In general, stomatal aperture was sufficient to explain the largest part of daytime ozone deposition. However, during nighttime, chemical reaction with nitrogen monoxide (NO) was found to contribute substantially to the O3 sink in the rain forest canopy. Further contributions were from non-stomatal plant uptake and other processes that could not be clearly identified. Measurements, made simultaneously on a 22 years old cattle pasture enabled the spatially and temporally direct comparison of O3 dry deposition values from this site with typical vegetation cover of deforested land in southwest Amazonia to the results from the primary rain forest. The mean ozone deposition to the pasture was found to be systematically lower than that to the forest by 30% in the wet and 18% in the dry season.

2007 ◽  
Vol 7 (20) ◽  
pp. 5415-5435 ◽  
Author(s):  
U. Rummel ◽  
C. Ammann ◽  
G. A. Kirkman ◽  
M. A. L. Moura ◽  
T. Foken ◽  
...  

Abstract. Within the project EUropean Studies on Trace gases and Atmospheric CHemistry as a contribution to Large-scale Biosphere-atmosphere experiment in Amazonia (LBA-EUSTACH), we performed tower-based eddy covariance measurements of O3 flux above an Amazonian primary rain forest at the end of the wet and dry season. Ozone deposition revealed distinct seasonal differences in the magnitude and diel variation. In the wet season, the rain forest was an effective O3 sink with a mean daytime (midday) maximum deposition velocity of 2.3 cm s−1, and a corresponding O3 flux of −11 nmol m−2 s−1. At the end of the dry season, the ozone mixing ratio was about four times higher (up to maximum values of 80 ppb) than in the wet season, as a consequence of strong regional biomass burning activity. However, the typical maximum daytime deposition flux was very similar to the wet season. This results from a strong limitation of daytime O3 deposition due to reduced plant stomatal aperture as a response to large values of the specific humidity deficit. As a result, the average midday deposition velocity in the dry burning season was only 0.5 cm s−1. The large diel ozone variation caused large canopy storage effects that masked the true diel variation of ozone deposition mechanisms in the measured eddy covariance flux, and for which corrections had to be made. In general, stomatal aperture was sufficient to explain the largest part of daytime ozone deposition. However, during nighttime, chemical reaction with nitrogen monoxide (NO) was found to contribute substantially to the O3 sink in the rain forest canopy. Further contributions were from non-stomatal plant uptake and other processes that could not be clearly identified. Measurements, made simultaneously on a 22 years old cattle pasture enabled the spatially and temporally direct comparison of O3 dry deposition values from this site with typical vegetation cover of deforested land in southwest Amazonia to the results from the primary rain forest. The mean ozone deposition to the pasture was found to be systematically lower than that to the forest by 30% in the wet and 18% in the dry season.


2005 ◽  
Vol 2 (2) ◽  
pp. 399-449 ◽  
Author(s):  
E. Simon ◽  
F. X. Meixner ◽  
U. Rummel ◽  
L. Ganzeveld ◽  
C. Ammann ◽  
...  

Abstract. A one-dimensional multi-layer scheme describing the coupled exchange of energy and CO2, the emission of isoprene and the dry deposition of ozone is applied to a rain forest canopy in southwest Amazonia. The model was constrained using mean diel cycles of micrometeorological quantities observed during two periods in the wet and dry season 1999. Predicted net fluxes and concentration profiles for both seasonal periods are compared to observations made at two nearby towers. The predicted day- and nighttime thermal stratification of the canopy layer is consistent with observations in dense canopies. The observed and calculated net fluxes above and H2O and CO2 concentration profiles within the canopy show a good agreement. The predicted net carbon sink decreases from 2.5 t C ha-1yr-1 for wet season conditions to 1 t C ha-1yr-1 for dry season conditions, whereas observed and predicted midday Bowen ratio increases from 0.5 to 0.8. The evaluation results confirmed a seasonal variability of leaf physiological parameters, as already suggested in the companion study. The predicted midday canopy net flux of isoprene increased from 7.1 mg C m-2h-1 during the wet season to 11.4 mg C m-2h-1 during the late dry season. Applying a constant emission capacity in all canopy layers, resulted in a disagreement between observed and simulated profiles of isoprene concentrations, suggesting a smaller emission capacity of shade adapted leaves and deposition to the soil or leaf surfaces. Assuming a strong light acclimation of emission capacity, equivalent to a 66% reduction of the standard emission factor for leaves in the lower canopy, resulted in a better agreement of observed and calculated concentration profiles and a 30% reduction of the canopy net flux. The mean calculated ozone flux for dry season condition at noontime was ≈12 nmol m-2s-1, agreeing well with observed values. The corresponding deposition velocity increased from 0.8 cm s-1 to >1.6 cm s-1 in the wet season, which can not be explained by increased stomatal uptake. Considering reasonable physiological changes in stomatal regulation, the predicted value was not larger than 1.05 cm s-1. Instead, the observed fluxes could be explained with the model by decreasing the cuticular resistance to ozone deposition from 5000 to 1000 s m-1. For doubled atmospheric CO2 concentrations the model predicts a strong increase of surface temperatures (0.1–1°C) and net assimilation (22%), a considerable shift in the energy budget (≈25% decreasing transpiration and increasing sensible heat), a slight increase of isoprene emissions (10%) and a strong decrease of ozone deposition (35%).


2009 ◽  
Vol 9 (6) ◽  
pp. 26881-26924
Author(s):  
L. Ahlm ◽  
E. D. Nilsson ◽  
R. Krejci ◽  
E. M. Mårtensson ◽  
M. Vogt ◽  
...  

Abstract. Vertical number fluxes of aerosol particles and vertical fluxes of CO2 were measured with the eddy covariance method at the top of a 53 m high tower in the Amazon rain forest as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) experiment. The observed aerosol number fluxes included particles with sizes down to 10 nm in diameter. The measurements were carried out during the wet and dry season in 2008. In this study focus is on the dry season aerosol fluxes, with significant influence from biomass burning, and these are compared with aerosol fluxes measured during the wet season. The primary goal is to quantify the dry deposition sink and to investigate whether particle deposition velocities change when going from the clean wet season into the more polluted dry season. Furthermore, it is tested whether the rain forest is always a net sink of particles in terms of number concentrations, or if particle emission from the surface under certain circumstances may dominate over the dry deposition sink. The particle deposition velocity vd increased linearly with increasing friction velocity in both seasons and the relations are described by vdd=(2.7 u* −0.2)×10−3 (dry season) and vdw=2.5 u*×10−3 (wet season), where u* is the friction velocity. The fact that the two relations are very similar to each other indicates that the seasonal change in aerosol number size distribution is not enough for causing any significant change in deposition velocity. In general, particle deposition velocities in this study are low compared to studies over boreal forests. The reason is probably domination of accumulation mode particles in the Amazon boundary layer, both in the dry and wet season, and low wind speeds in the tropics compared to the midlatitudes. Net particle deposition fluxes prevailed in daytime in both seasons and the deposition flux was considerably larger in the dry season due to the much higher dry season particle concentration. In the dry season, nocturnal particle fluxes behaved very similar to the nocturnal CO2 fluxes. Throughout the night, the measured particle flux at the top of the tower was close to zero, but early in the morning there was an upward particle flux peak that is not likely a result of entrainment or local pollution. It is possible that these morning upward particle fluxes are associated with emission of natural biogenic particles from the rain forest. Emitted particles may be stored within the canopy during stable conditions at nighttime, similarly to CO2, and being released from the canopy when conditions become more turbulent in the morning.


2010 ◽  
Vol 10 (6) ◽  
pp. 3063-3079 ◽  
Author(s):  
L. Ahlm ◽  
E. D. Nilsson ◽  
R. Krejci ◽  
E. M. Mårtensson ◽  
M. Vogt ◽  
...  

Abstract. Vertical number fluxes of aerosol particles and vertical fluxes of CO2 were measured with the eddy covariance method at the top of a 53 m high tower in the Amazon rain forest as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) experiment. The observed aerosol number fluxes included particles with sizes down to 10 nm in diameter. The measurements were carried out during the wet and dry season in 2008. In this study focus is on the dry season aerosol fluxes, with significant influence from biomass burning, and these are compared with aerosol fluxes measured during the wet season. Net particle deposition fluxes dominated in daytime in both seasons and the deposition flux was considerably larger in the dry season due to the much higher dry season particle concentration. The particle transfer velocity increased linearly with increasing friction velocity in both seasons. The difference in transfer velocity between the two seasons was small, indicating that the seasonal change in aerosol number size distribution is not enough for causing any significant change in deposition velocity. In general, particle transfer velocities in this study are low compared to studies over boreal forests. The reasons are probably the high percentage of accumulation mode particles and the low percentage of nucleation mode particles in the Amazon boundary layer, both in the dry and wet season, and low wind speeds in the tropics compared to the midlatitudes. In the dry season, nocturnal particle fluxes behaved very similar to the nocturnal CO2 fluxes. Throughout the night, the measured particle flux at the top of the tower was close to zero, but early in the morning there was an upward particle flux peak that is not likely a result of entrainment or local pollution. It is possible that these morning upward particle fluxes are associated with emission of primary biogenic particles from the rain forest. Emitted particles may be stored within the canopy during stable conditions at nighttime, similarly to CO2, and being released from the canopy when conditions become more turbulent in the morning.


2018 ◽  
Author(s):  
Luciana Varanda Rizzo ◽  
Pontus Roldin ◽  
Joel Brito ◽  
John Backman ◽  
Erik Swietlicki ◽  
...  

Abstract. The Amazon Basin is a unique region to study atmospheric aerosols, given their relevance for the regional hydrological cycle and large uncertainty of their sources. Multi-year datasets are crucial when contrasting periods of natural conditions and periods influenced by anthropogenic emissions. In the wet season, biogenic sources and processes prevail, and the Amazonian atmospheric composition resembles pre-industrial conditions. In the dry season, the Basin is influenced by widespread biomass burning emissions. This work reports multi-year observations of high time resolution submicrometer (10–600 nm) particle number size distributions at a rain forest site in Amazonia (TT34 tower, 60 km NW from Manaus city), between years 2008–2010 and 2012–2014. Median particle number concentration was 403 cm−3 in the wet season and 1254 cm−3 in the dry season. The Aitken mode (~ 30–100 nm in diameter) was prominent during the wet season, while accumulation mode (~ 100–600 nm in diameter) dominated the particle size spectra during the dry season. Cluster analysis identified groups of aerosol number size distribution influenced by convective downdrafts, nucleation events and fresh biomass burning emissions. New particle formation and subsequent growth was rarely observed during the 749 days of observations, similar to previous observations in the Amazon Basin. A stationary 1D column model (ADCHEM – Aerosol Dynamics, gas and particle phase CHEMistry and radiative transfer model) was used to assess importance of processes behind the observed diurnal particle size distribution trends. Three major particle source types are required in the model to reproduce the observations: (i) a surface source of particles in the evening, possibly related to primary biological emissions (ii) entrainment of accumulation mode aerosols in the morning, and (iii) convective downdrafts transporting Aitken mode particles into the boundary layer mostly during the afternoon. The latter process has the largest influence on the modelled particle number size distributions. However, convective downdrafts are often associated with rain and thus act both as a source of Aitken mode particles, and as a sink of accumulation mode particles, causing a net reduction in the median total particle number concentrations in the surface layer. Our study shows that the combination of the three mentioned particle sources are essential to sustain particle number concentrations in Amazonia.


2020 ◽  
Author(s):  
Stephany Magaly Callañaupa Gutierrez ◽  
Hans Segura Cajachagua ◽  
Miguel Saavedra ◽  
Jose Flores ◽  
Joan Cuxart ◽  
...  

<p>In this study, the real evapotranspiration (ET) obtained using the eddy covariance (EC) technique from field crops located in the central Peruvian Andes (Huancayo Observatory, 12.04° S, 75.32°, 3350 msnm) is analyzed. Data from a sonic anemometer and a krypton hygrometer are used to estimate daily and monthly ET variability and to explore relationships with meteorological and surface variables. The results show that the mean value of daily evapotranspiration is estimated to be 3.45 mm/day during the wet season (January to March) while in the dry season (June to August) the value is 0.95 mm/day. In addition, linear regressions were used in order to evaluate the relationship of meteorological variables with evapotranspiration. As a result, solar radiation is the meteorological variable that has a strong relationship with evapotranspiration during the wet season (r2=0.76, p-value <0.005) and soil moisture during the dry season (r2=0.77, p-value <0.005). These results indicate a clear water-energy limitation depending on the season. Besides, the empirical evapotranspiration equations of FAO Penman-Monteith, Priestley-Taylor and Hargreaves were validated. Where the Priestley-Taylor equation is the empirical equation that best fits the observed data of evapotranspiration by EC (r2=0.70, p-value< 0.005).</p>


2009 ◽  
Vol 9 (24) ◽  
pp. 9381-9400 ◽  
Author(s):  
L. Ahlm ◽  
E. D. Nilsson ◽  
R. Krejci ◽  
E. M. Mårtensson ◽  
M. Vogt ◽  
...  

Abstract. Number fluxes of particles with diameter larger than 10 nm were measured with the eddy covariance method over the Amazon rain forest during the wet season as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) campaign 2008. The primary goal was to investigate whether sources or sinks dominate the aerosol number flux in the tropical rain forest-atmosphere system. During the measurement campaign, from 12 March to 18 May, 60% of the particle fluxes pointed downward, which is a similar fraction to what has been observed over boreal forests. The net deposition flux prevailed even in the absolute cleanest atmospheric conditions during the campaign and therefore cannot be explained only by deposition of anthropogenic particles. The particle transfer velocity vt increased with increasing friction velocity and the relation is described by the equation vt = 2.4×10−3×u* where u* is the friction velocity. Upward particle fluxes often appeared in the morning hours and seem to a large extent to be an effect of entrainment fluxes into a growing mixed layer rather than primary aerosol emission. In general, the number source of primary aerosol particles within the footprint area of the measurements was small, possibly because the measured particle number fluxes reflect mostly particles less than approximately 200 nm. This is an indication that the contribution of primary biogenic aerosol particles to the aerosol population in the Amazon boundary layer may be low in terms of number concentrations. However, the possibility of horizontal variations in primary aerosol emission over the Amazon rain forest cannot be ruled out.


1986 ◽  
Vol 2 (4) ◽  
pp. 327-347 ◽  
Author(s):  
C. P. Van Schaik

ABSTRACTPhenological observations were made in a Sumatran rain forest during three years (1980–1982). Phenological changes followed a consistent seasonal pattern. The abundance of young leaves and the fall of leaf litter peaked between December and February (first dry season); flowers were most abundant between January and April (first dry and first wet sea son), and ripe fruits in July-August (the second dry season). The fruit of strangling fig trees showed peaks in April and October, both wet season months. Within the study area there was variation in both the phase and the amplitude of the phenological cycles. One year, 1981, displayed mast flowering and fruiting. The observations indicate that the conditions for production were better during the mast year, a finding that facilitates our understanding of the evolution of mast fruiting.


2018 ◽  
Vol 18 (14) ◽  
pp. 10255-10274 ◽  
Author(s):  
Luciana Varanda Rizzo ◽  
Pontus Roldin ◽  
Joel Brito ◽  
John Backman ◽  
Erik Swietlicki ◽  
...  

Abstract. The Amazon Basin is a unique region to study atmospheric aerosols, given their relevance for the regional hydrological cycle and the large uncertainty of their sources. Multi-year datasets are crucial when contrasting periods of natural conditions and periods influenced by anthropogenic emissions. In the wet season, biogenic sources and processes prevail, and the Amazonian atmospheric composition resembles preindustrial conditions. In the dry season, the basin is influenced by widespread biomass burning emissions. This work reports multi-year observations of high time resolution submicrometer (10–600 nm) particle number size distributions at a rain forest site in Amazonia (TT34 tower, 60 km NW from Manaus city), between 2008 and 2010 and 2012 and 2014. The median particle number concentration was 403 cm−3 in the wet season and 1254 cm−3 in the dry season. The Aitken mode (∼ 30–100 nm in diameter) was prominent during the wet season, while the accumulation mode (∼ 100–600 nm in diameter) dominated the particle size spectra during the dry season. Cluster analysis identified groups of aerosol number size distributions influenced by convective downdrafts, nucleation events and fresh biomass burning emissions. New particle formation and subsequent growth was rarely observed during the 749 days of observations, similar to previous observations in the Amazon Basin. A stationary 1-D column model (ADCHEM – Aerosol Dynamics, gas and particle phase CHEMistry and radiative transfer model) was used to assess the importance of the processes behind the observed diurnal particle size distribution trends. Three major particle source types are required in the model to reproduce the observations: (i) a surface source of particles in the evening, possibly related to primary biological emissions; (ii) entrainment of accumulation mode aerosols in the morning; and (iii) convective downdrafts transporting Aitken mode particles into the boundary layer mostly during the afternoon. The latter process has the largest influence on the modeled particle number size distributions. However, convective downdrafts are often associated with rain and, thus, act as both a source of Aitken mode particles and a sink of accumulation mode particles, causing a net reduction in the median total particle number concentrations in the surface layer. Our study shows that the combination of the three mentioned particle sources is essential to sustain particle number concentrations in Amazonia.


2005 ◽  
Vol 21 (4) ◽  
pp. 451-460 ◽  
Author(s):  
Eduardo Jacusiel Miranda ◽  
George L. Vourlitis ◽  
Nicolau Priante Filho ◽  
Pedro Correto Priante ◽  
José Holanda Campelo ◽  
...  

The photosynthetic light response of Amazonian semi-deciduous forest trees of the rain forest–savanna transition near Sinop Mato Grosso, Brazil was measured between July 2000 and September 2003 to test the hypothesis that the photosynthetic capacity of trees acclimated to different growth light environments will decline during the dry season. Maximum photosynthesis (Amax) and stomatal conductance (gmax) were significantly higher during the wet season; however, the physiological response to drought was not a clear function of growth light environment. For some species, such as Psychotria sp. growing in the mid-canopy, internal leaf CO2 concentration (Ci) was >30% lower during the dry season suggesting that declines in Amax were caused in part by stomatal limitations to CO2 diffusion. For other species, such as Brosimum lactescens growing at the top of the canopy, Tovomita schomburgkii growing in the mid-canopy, and Dinizia excelsa growing in the understorey, dry season Ci declined by <20% suggesting that factors independent of CO2 diffusion were more important in limiting Amax. Dry-season declines in gmax appeared to be important for maintaining a more consistent leaf water potential for some species (T. schomburgkii and D. excelsa) but not others (Psychotria sp.). These results indicate that while seasonal drought exerts an important limitation on the physiological capacity of semi-deciduous Amazonian forest trees, the mechanism of this limitation may differ between species.


Sign in / Sign up

Export Citation Format

Share Document