scholarly journals Spatio-temporal variability and principal components of the particle number size distribution in an urban atmosphere

2008 ◽  
Vol 8 (5) ◽  
pp. 18155-18217 ◽  
Author(s):  
F. Costabile ◽  
W. Birmili ◽  
S. Klose ◽  
T. Tuch ◽  
B. Wehner ◽  
...  

Abstract. Due to the presence of diffusive anthropogenic sources in urban areas, the spatio-temporal variability of fine (diameter <1 μm) and ultrafine (<0.1 μm) aerosol particles has been a challenging issue in particle exposure assessment as well as atmospheric research in general. We examined number size distributions of atmospheric aerosol particles (size range 3–800 nm) that were measured simultaneously at a maximum of eight observation sites in and around a city in Central Europe (Leipzig, Germany). Two main experiments were conducted with different time span and number of observation sites (2 years at 3 sites; 1 month at 8 sites). A general observation was that the particle number size distribution varied in time and space in a complex fashion as a result of interaction between local and far-range sources, and the meteorological conditions. To identify statistically independent factors in the urban aerosol, different runs of principal component analysis were conducted encompassing aerosol, gas phase, and meteorological parameters from the multiple sites. Several of the resulting principal components, outstanding with respect to their temporal persistence and spatial coverage, could be associated with aerosol particle modes: a first accumulation mode ("droplet mode", 300–800 nm), considered to be the result of liquid phase processes and far-range transport; a second accumulation mode (centered around diameters 90–250 nm), considered to result from primary emissions as well as aging through condensation and coagulation; an Aitken mode (30–200 nm) linked to urban traffic emissions in addition to an urban and a rural Aitken mode; a nucleation mode (5–20 nm) linked to urban traffic emissions; nucleation modes (3–20 nm) linked to photochemically induced particle formation; an aged nucleation mode (10–50 nm). A number of additional components were identified to represent only local sources at a single site each, or infrequent phenomena. In summary, the analysis of size distributions of high time and size resolution yielded a surprising wealth of statistical aerosol components occurring in the urban atmosphere over one single city. Meanwhile, satisfactory physical explanations could be found for the components with the greatest temporal persistence and spatial coverage. Therefore a paradigm on the behaviour of sub-μm urban aerosol particles is proposed, with recommendations how to efficiently monitor individual sub-fractions across an entire city.

2009 ◽  
Vol 9 (9) ◽  
pp. 3163-3195 ◽  
Author(s):  
F. Costabile ◽  
W. Birmili ◽  
S. Klose ◽  
T. Tuch ◽  
B. Wehner ◽  
...  

Abstract. A correct description of fine (diameter <1 μm) and ultrafine (<0.1 μm) aerosol particles in urban areas is of interest for particle exposure assessment but also basic atmospheric research. We examined the spatio-temporal variability of atmospheric aerosol particles (size range 3–800 nm) using concurrent number size distribution measurements at a maximum of eight observation sites in and around Leipzig, a city in Central Europe. Two main experiments were conducted with different time span and number of observation sites (2 years at 3 sites; 1 month at 8 sites). A general observation was that the particle number size distribution varied in time and space in a complex fashion as a result of interaction between local and far-range sources, and the meteorological conditions. To identify statistically independent factors in the urban aerosol, different runs of principal component (PC) analysis were conducted encompassing aerosol, gas phase, and meteorological parameters from the multiple sites. Several of the resulting PCs, outstanding with respect to their temporal persistence and spatial coverage, could be associated with aerosol particle modes: a first accumulation mode ("droplet mode", 300–800 nm), considered to be the result of liquid phase processes and far-range transport; a second accumulation mode (centered around diameters 90–250 nm), considered to result from primary emissions as well as aging through condensation and coagulation; an Aitken mode (30–200 nm) linked to urban traffic emissions in addition to an urban and a rural Aitken mode; a nucleation mode (5–20 nm) linked to urban traffic emissions; nucleation modes (3–20 nm) linked to photochemically induced particle formation; an aged nucleation mode (10–50 nm). Additional PCs represented only local sources at a single site, or infrequent phenomena. In summary, the analysis of size distributions of high time and size resolution yielded a surprising wealth of statistical aerosol components occurring in the urban atmosphere over one single city. A paradigm on the behaviour of sub-μm urban aerosol particles is proposed, with recommendations how to efficiently monitor individual sub-fractions across an entire city.


2021 ◽  
Vol 21 (14) ◽  
pp. 11289-11302
Author(s):  
Imre Salma ◽  
Wanda Thén ◽  
Máté Vörösmarty ◽  
András Zénó Gyöngyösi

Abstract. Collocated measurements using a condensation particle counter, differential mobility particle sizer and cloud condensation nuclei counter were realised in parallel in central Budapest from 15 April 2019 to 14 April 2020 to gain insight into the cloud activation properties of urban aerosol particles. The median total particle number concentration was 10.1 × 103 cm−3. The median concentrations of cloud condensation nuclei (CCN) at water vapour supersaturation (S) values of 0.1 %, 0.2 %, 0.3 %, 0.5 % and 1.0 % were 0.59, 1.09, 1.39, 1.80 and 2.5 × 103 cm−3, respectively. The CCN concentrations represented 7–27 % of all particles. The CCN concentrations were considerably larger but the activation fractions were systematically substantially smaller than observed in regional or remote locations. The effective critical dry particle diameters (dc,eff) were derived utilising the CCN concentrations and particle number size distributions. Their median values at the five supersaturation values considered were 207, 149, 126, 105 and 80 nm, respectively; all of these diameters were positioned within the accumulation mode of the typical particle number size distribution. Their frequency distributions revealed a single peak for which the geometric standard deviation increased monotonically with S. This broadening indicated high time variability in the activating properties of smaller particles. The frequency distributions also showed fine structure, with several compositional elements that seemed to reveal a consistent or monotonical tendency with S. The relationships between the critical S and dc,eff suggest that urban aerosol particles in Budapest with diameters larger than approximately 130 nm showed similar hydroscopicity to corresponding continental aerosol particles, whereas smaller particles in Budapest were less hygroscopic than corresponding continental aerosol particles. Only modest seasonal cycling in CCN concentrations and activation fractions was seen, and only for large S values. This cycling likely reflects changes in the number concentration, chemical composition and mixing state of the particles. The seasonal dependencies of dc,eff were featureless, indicating that the droplet activation properties of the urban particles remained more or less the same throughout the year. This is again different from what is seen in non-urban locations. Hygroscopicity parameters (κ values) were computed without determining the time-dependent chemical composition of the particles. The median values for κ were 0.15, 0.10, 0.07, 0.04 and 0.02, respectively, at the five supersaturation values considered. The averages suggested that the larger particles were considerably more hygroscopic than the smaller particles. We found that the κ values for the urban aerosol were substantially smaller than those previously reported for aerosols in regional or remote locations. All of these characteristics can be linked to the specific source composition of particles in cities. The relatively large variability in the hygroscopicity parameters for a given S emphasises that the individual values represent the CCN population in ambient air while the average hygroscopicity parameter mainly corresponds to particles with sizes close to the effective critical dry particle diameter.


2016 ◽  
Vol 8 (2) ◽  
pp. 355-382 ◽  
Author(s):  
Wolfram Birmili ◽  
Kay Weinhold ◽  
Fabian Rasch ◽  
André Sonntag ◽  
Jia Sun ◽  
...  

Abstract. The German Ultrafine Aerosol Network (GUAN) is a cooperative atmospheric observation network, which aims at improving the scientific understanding of aerosol-related effects in the troposphere. The network addresses research questions dedicated to both climate- and health-related effects. GUAN's core activity has been the continuous collection of tropospheric particle number size distributions and black carbon mass concentrations at 17 observation sites in Germany. These sites cover various environmental settings including urban traffic, urban background, rural background, and Alpine mountains. In association with partner projects, GUAN has implemented a high degree of harmonisation of instrumentation, operating procedures, and data evaluation procedures. The quality of the measurement data is assured by laboratory intercomparisons as well as on-site comparisons with reference instruments. This paper describes the measurement sites, instrumentation, quality assurance, and data evaluation procedures in the network as well as the EBAS repository, where the data sets can be obtained (doi:10.5072/guan).


2020 ◽  
Vol 20 (19) ◽  
pp. 11329-11348 ◽  
Author(s):  
Jenni Kontkanen ◽  
Chenjuan Deng ◽  
Yueyun Fu ◽  
Lubna Dada ◽  
Ying Zhou ◽  
...  

Abstract. The climate and air quality effects of aerosol particles depend on the number and size of the particles. In urban environments, a large fraction of aerosol particles originates from anthropogenic emissions. To evaluate the effects of different pollution sources on air quality, knowledge of size distributions of particle number emissions is needed. Here we introduce a novel method for determining size-resolved particle number emissions, based on measured particle size distributions. We apply our method to data measured in Beijing, China, to determine the number size distribution of emitted particles in a diameter range from 2 to 1000 nm. The observed particle number emissions are dominated by emissions of particles smaller than 30 nm. Our results suggest that traffic is the major source of particle number emissions with the highest emissions observed for particles around 10 nm during rush hours. At sizes below 6 nm, clustering of atmospheric vapors contributes to calculated emissions. The comparison between our calculated emissions and those estimated with an integrated assessment model GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) shows that our method yields clearly higher particle emissions at sizes below 60 nm, but at sizes above that the two methods agree well. Overall, our method is proven to be a useful tool for gaining new knowledge of the size distributions of particle number emissions in urban environments and for validating emission inventories and models. In the future, the method will be developed by modeling the transport of particles from different sources to obtain more accurate estimates of particle number emissions.


2010 ◽  
Vol 10 (10) ◽  
pp. 4643-4660 ◽  
Author(s):  
W. Birmili ◽  
K. Heinke ◽  
M. Pitz ◽  
J. Matschullat ◽  
A. Wiedensohler ◽  
...  

Abstract. Aerosol particle number size distributions (size range 0.003–10 μm) in the urban atmosphere of Augsburg (Germany) were examined with respect to the governing anthropogenic sources and meteorological factors. The two-year average particle number concentration between November 2004 and November 2006 was 12 200 cm−3, i.e. similar to previous observations in other European cities. A seasonal analysis yielded twice the total particle number concentrations in winter as compared to summer as consequence of more frequent inversion situations and enhanced particulate emissions. The diurnal variations of particle number were shaped by a remarkable maximum in the morning during the peak traffic hours. After a mid-day decrease along with the onset of vertical mixing, an evening concentration maximum could frequently be observed, suggesting a re-stratification of the urban atmosphere. Overall, the mixed layer height turned out to be the most influential meteorological parameter on the particle size distribution. Its influence was even greater than that of the geographical origin of the prevailing synoptic-scale air mass. Size distributions below 0.8 μm were also measured downstream of a thermodenuder (temperature: 300 °C), allowing to retrieve the volume concentration of non-volatile compounds. The balance of particle number upstream and downstream of the thermodenuder suggests that practically all particles >12 nm contain a non-volatile core while additional nucleation of particles smaller than 6 nm could be observed after the thermodenuder as an interfering artifact of the method. The good correlation between the non-volatile volume concentration and an independent measurement of the aerosol absorption coefficient (R2=0.9) suggests a close correspondence of the refractory and light-absorbing particle fractions. Using the "summation method", an average diameter ratio of particles before and after volatilisation could be determined as a function of particle size. The results indicated that particles >60 nm contain a significantly higher fraction of non-volatile compounds, most likely black carbon, than particles <60 nm. The results are relevant for future health-related studies in that they explore the size distribution and time-dependent behaviour of the refractory component of the urban aerosol over an extended time period.


2013 ◽  
Vol 77 ◽  
pp. 415-429 ◽  
Author(s):  
Clemens von Bismarck-Osten ◽  
Wolfram Birmili ◽  
Matthias Ketzel ◽  
Andreas Massling ◽  
Tuukka Petäjä ◽  
...  

2014 ◽  
Vol 14 (19) ◽  
pp. 26463-26494 ◽  
Author(s):  
M. Brines ◽  
M. Dall'Osto ◽  
D. C. S. Beddows ◽  
R. M. Harrison ◽  
F. Gómez-Moreno ◽  
...  

Abstract. Road traffic emissions are often considered the main source of ultrafine particles (UFP, diameter smaller than 100 nm) in urban environments. However, recent studies have shown that – in southern European urban regions at least – new particle formation events can also contribute to UFP. In order to quantify such events we systematically studied four cities with a Mediterranean climate: Barcelona, Madrid, Rome and Los Angeles. The city of Brisbane is also included in our study due to its similar climate. Five long term datasets (from 3 months to 2 years) of fine and ultrafine particle number size distributions (measured by SMPS, Scanning Mobility Particle Sizer) were analysed. By applying k-Means clustering analysis, we categorized the collected aerosol size distributions in four main classes: "Traffic" (prevailing 41–63% of the time), "Background Pollution" (6–53%), "Nucleation" (6–33%) and "Specific case" (7–20%) the latter being site specific. The daily variation of the average UFP concentrations for a typical nucleation day at each site revealed a similar pattern for all cities, with three distinct particle bursts. A morning and an evening spike reflected traffic rush hours, whereas a third one at midday showed new particle formation events. This work shows that the average occurrence of particle size spectra dominated by new particle formation events was 18% of the time, showing the importance of this process as a source of UFP in the Mediterranean urban atmosphere. Furthermore, in a number of the studied cities, particle number concentration averaged daily profiles for the whole study periods clearly showed the same three particle bursts. This reveals nucleation events as a relevant contributor to the average daily urban exposure to UFP in Mediterranean urban environments.


2021 ◽  
Author(s):  
Imre Salma ◽  
Wanda Thén ◽  
Máté Vörösmarty ◽  
András Zénó Gyöngyösi

Abstract. Collocated measurements by condensation particle counter, differential mobility particle sizer and cloud condensational nuclei counter instruments were realised in parallel in central Budapest from 15 April 2019 to 14 April 2020 to gain insight into the droplet activation behaviour of urban aerosol particles. The median total particle number concentration was 10.1 × 103 cm−3. The median concentrations of cloud condensation nuclei (CCN) at water vapour supersaturations (Ss) of 0.1, 0.2, 0.3, 0.5 and 1.0 % were 0.59, 1.09, 1.39, 1.80 and 2.5 × 103 cm−3, respectively. They represented from 7 to 27 % of the total particles. The effective critical dry particle diameters (dc,eff) were derived utilising the CCN concentrations and particle number size distributions. Their medians were 207, 149, 126, 105 and 80 nm, respectively. They were all positioned within the accumulation mode of the typical particle number size distribution. Their frequency distributions revealed a single peak, which geometric standard deviation increased monotonically with S. The broadening indicated larger time variability in the activation properties of smaller particles. The frequency distributions also showed a fine structure. Its several compositional elements seemed to change in a tendentious manner with S. They were related to the size-dependent chemical composition and external mixtures of particles. The relationships between the critical S and dc,eff suggested that the urban aerosol particles in Budapest with a diameter larger than approximately 130 nm showed similar hygroscopicity than the continental aerosol in general, while the smaller particles appeared to be less hygroscopic than that. Seasonal cycling of the CCN concentrations and activation fractions implied modest alterations and for the larger Ss only. They likely reflected the changes in particle number concentrations, chemical composition and mixing state of particles. The seasonal dependencies for dc,eff were featureless, which indicated that the urban particles exhibited more or less similar droplet activation properties over the measurement year. This is different from non-urban locations. The hygroscopicity parameters (κ values) were computed without determining time-dependent chemical composition of particles. Their medians were 0.16, 0.10, 0.07, 0.04 and 0.02, respectively. The averages suggested that the larger particles exhibited considerably higher hygroscopicity than the smaller particles. The urban aerosol was characterised by substantially smaller kappa values than for regional or remote locations. All these could be virtually linked to specific source composition in cities. The relatively large variability in the hygroscopicity parameter sets for a given S emphasized that their individual values represented the CCN population in the ambient air, while the averages stood mainly for the particles with a size close to the effective critical dry particle diameters.


2011 ◽  
Vol 11 (13) ◽  
pp. 6623-6637 ◽  
Author(s):  
M. Dall'Osto ◽  
A. Thorpe ◽  
D. C. S. Beddows ◽  
R. M. Harrison ◽  
J. F. Barlow ◽  
...  

Abstract. Nanoparticles emitted from road traffic are the largest source of respiratory exposure for the general public living in urban areas. It has been suggested that adverse health effects of airborne particles may scale with airborne particle number, which if correct, focuses attention on the nanoparticle (less than 100 nm) size range which dominates the number count in urban areas. Urban measurements of particle size distributions have tended to show a broadly similar pattern dominated by a mode centred on 20–30 nm diameter emitted by diesel engine exhaust. In this paper we report the results of measurements of particle number concentration and size distribution made in a major London park as well as on the BT Tower, 160 m aloft. These measurements taken during the REPARTEE project (Regents Park and BT Tower experiment) show a remarkable shift in particle size distributions with major losses of the smallest particle class as particles are advected away from the traffic source. In the Park, the traffic related mode at 20–30 nm diameter is much reduced with a new mode at <10 nm. Size distribution measurements also revealed higher number concentrations of sub-50 nm particles at the BT Tower during days affected by higher turbulence as determined by Doppler Lidar measurements and are indicative of loss of nanoparticles from air aged during less turbulent conditions. These results are suggestive of nanoparticle loss by evaporation, rather than coagulation processes. The results have major implications for understanding the impacts of traffic-generated particulate matter on human health.


Sign in / Sign up

Export Citation Format

Share Document