scholarly journals Investigation of the transferability of hydrological models and a method to improve model calibration

2005 ◽  
Vol 5 ◽  
pp. 83-87 ◽  
Author(s):  
G. Hartmann ◽  
A. Bárdossy

Abstract. In order to find a model parameterization such that the hydrological model performs well even under different conditions, appropriate model performance measures have to be determined. A common performance measure is the Nash Sutcliffe efficiency. Usually it is calculated comparing observed and modelled daily values. In this paper a modified version is suggested in order to calibrate a model on different time scales simultaneously (days up to years). A spatially distributed hydrological model based on HBV concept was used. The modelling was applied on the Upper Neckar catchment, a mesoscale river in south western Germany with a basin size of about 4000 km2. The observation period 1961-1990 was divided into four different climatic periods, referred to as "warm", "cold", "wet" and "dry". These sub periods were used to assess the transferability of the model calibration and of the measure of performance. In a first step, the hydrological model was calibrated on a certain period and afterwards applied on the same period. Then, a validation was performed on the climatologically opposite period than the calibration, e.g. the model calibrated on the cold period was applied on the warm period. Optimal parameter sets were identified by an automatic calibration procedure based on Simulated Annealing. The results show, that calibrating a hydrological model that is supposed to handle short as well as long term signals becomes an important task. Especially the objective function has to be chosen very carefully.

2017 ◽  
Vol 21 (9) ◽  
pp. 4895-4905 ◽  
Author(s):  
H. J. Ilja van Meerveld ◽  
Marc J. P. Vis ◽  
Jan Seibert

Abstract. Citizen science can provide spatially distributed data over large areas, including hydrological data. Stream levels are easier to measure than streamflow and are likely also observed more easily by citizen scientists than streamflow. However, the challenge with crowd based stream level data is that observations are taken at irregular time intervals and with a limited vertical resolution. The latter is especially the case at sites where no staff gauge is available and relative stream levels are observed based on (in)visible features in the stream, such as rocks. In order to assess the potential value of crowd based stream level observations for model calibration, we pretended that stream level observations were available at a limited vertical resolution by transferring streamflow data to stream level classes. A bucket-type hydrological model was calibrated with these hypothetical stream level class data and subsequently evaluated on the observed streamflow records. Our results indicate that stream level data can result in good streamflow simulations, even with a reduced vertical resolution of the observations. Time series of only two stream level classes, e.g. above or below a rock in the stream, were already informative, especially when the class boundary was chosen towards the highest stream levels. There was some added value in using up to five stream level classes, but there was hardly any improvement in model performance when using more level classes. These results are encouraging for citizen science projects and provide a basis for designing observation systems that collect data that are as informative as possible for deriving model based streamflow time series for previously ungauged basins.


2006 ◽  
Vol 10 (3) ◽  
pp. 395-412 ◽  
Author(s):  
H. Kunstmann ◽  
J. Krause ◽  
S. Mayr

Abstract. Even in physically based distributed hydrological models, various remaining parameters must be estimated for each sub-catchment. This can involve tremendous effort, especially when the number of sub-catchments is large and the applied hydrological model is computationally expensive. Automatic parameter estimation tools can significantly facilitate the calibration process. Hence, we combined the nonlinear parameter estimation tool PEST with the distributed hydrological model WaSiM. PEST is based on the Gauss-Marquardt-Levenberg method, a gradient-based nonlinear parameter estimation algorithm. WaSiM is a fully distributed hydrological model using physically based algorithms for most of the process descriptions. WaSiM was applied to the alpine/prealpine Ammer River catchment (southern Germany, 710 km2 in a 100×100 m2 horizontal resolution. The catchment is heterogeneous in terms of geology, pedology and land use and shows a complex orography (the difference of elevation is around 1600 m). Using the developed PEST-WaSiM interface, the hydrological model was calibrated by comparing simulated and observed runoff at eight gauges for the hydrologic year 1997 and validated for the hydrologic year 1993. For each sub-catchment four parameters had to be calibrated: the recession constants of direct runoff and interflow, the drainage density, and the hydraulic conductivity of the uppermost aquifer. Additionally, five snowmelt specific parameters were adjusted for the entire catchment. Altogether, 37 parameters had to be calibrated. Additional a priori information (e.g. from flood hydrograph analysis) narrowed the parameter space of the solutions and improved the non-uniqueness of the fitted values. A reasonable quality of fit was achieved. Discrepancies between modelled and observed runoff were also due to the small number of meteorological stations and corresponding interpolation artefacts in the orographically complex terrain. Application of a 2-dimensional numerical groundwater model partly yielded a slight decrease of overall model performance when compared to a simple conceptual groundwater approach. Increased model complexity therefore did not yield in general increased model performance. A detailed covariance analysis was performed allowing to derive confidence bounds for all estimated parameters. The correlation between the estimated parameters was in most cases negligible, showing that parameters were estimated independently from each other.


2008 ◽  
Vol 5 (3) ◽  
pp. 1641-1675 ◽  
Author(s):  
A. Bárdossy ◽  
S. K. Singh

Abstract. The estimation of hydrological model parameters is a challenging task. With increasing capacity of computational power several complex optimization algorithms have emerged, but none of the algorithms gives an unique and very best parameter vector. The parameters of hydrological models depend upon the input data. The quality of input data cannot be assured as there may be measurement errors for both input and state variables. In this study a methodology has been developed to find a set of robust parameter vectors for a hydrological model. To see the effect of observational error on parameters, stochastically generated synthetic measurement errors were applied to observed discharge and temperature data. With this modified data, the model was calibrated and the effect of measurement errors on parameters was analysed. It was found that the measurement errors have a significant effect on the best performing parameter vector. The erroneous data led to very different optimal parameter vectors. To overcome this problem and to find a set of robust parameter vectors, a geometrical approach based on the half space depth was used. The depth of the set of N randomly generated parameters was calculated with respect to the set with the best model performance (Nash-Sutclife efficiency was used for this study) for each parameter vector. Based on the depth of parameter vectors, one can find a set of robust parameter vectors. The results show that the parameters chosen according to the above criteria have low sensitivity and perform well when transfered to a different time period. The method is demonstrated on the upper Neckar catchment in Germany. The conceptual HBV model was used for this study.


2020 ◽  
Author(s):  
Félix Francés ◽  
Carlos Echeverría ◽  
Maria Gonzalez-Sanchis ◽  
Fernando Rivas

<p>Calibration of eco-hydrological models is difficult to carry on, even more if observed data sets are scarce. It is known that calibration using traditional trial-and-error approach depends strongly of the knowledge and the subjectivity of the hydrologist, and automatic calibration has a strong dependency of the objective-function and the initial values established to initialize the process.</p><p>The traditional calibration approach mainly focuses on the temporal variation of the discharge at the catchment outlet point, representing an integrated catchment response and provides thus only limited insight on the lumped behaviour of the catchment. It has been long demonstrated the limited capabilities of such an approach when models are validated at interior points of a river basin. The development of distributed eco-hydrological models and the burst of spatio-temporal data provided by remote sensing appear as key alternative to overcome those limitations. Indeed, remote sensing imagery provides not only temporal information but also valuable information on spatial patterns, which can facilitate a spatial-pattern-oriented model calibration.</p><p>However, there is still a lack of how to effectively handle spatio-temporal data when included in model calibration and how to evaluate the accuracy of the simulated spatial patterns. Moreover, it is still unclear whether including spatio-temporal data improves model performance in face to an unavoidable more complex and time-demanding calibration procedure. To elucidate in this sense, we performed three different multiobjective calibration configurations: (1) including only temporal information of discharges at the catchment outlet (2) including both temporal and spatio-temporal information and (3) only including spatio-temporal information. In the three approaches, we calibrated the same distributed eco-hydrological model (TETIS) in the same study area: Carraixet Basin, and used the same multi-objective algorithm: MOSCEM-UA. The spatio-temporal information obtained from satellite has been the surface soil moisture (from SMOS-BEC) and the leaf area index (from MODIS).</p><p>Even though the performance of the first calibration approach (only temporal information included) was slightly better than the others, all calibration approaches provided satisfactory and similar results within the calibration period. To put these results into test, we also validated the model performance by using historical data that was not used to calibrate the model (validation period). Within the validation period, the second calibration approach obtained better performance than the others, pointing out the higher reliability of the obtained parameter values when including spatio-temporal data (in this case, in combination with temporal data) in the model calibration. It is also reliable to mention that the approaches considering only spatio-temporal information provided interesting results in terms of discharges, considering that this variable was not used at all for calibration purposes.</p>


2016 ◽  
Vol 64 (4) ◽  
pp. 304-315 ◽  
Author(s):  
Kamila Hlavčová ◽  
Silvia Kohnová ◽  
Marco Borga ◽  
Oliver Horvát ◽  
Pavel Šťastný ◽  
...  

Abstract This work examines the main features of the flash flood regime in Central Europe as revealed by an analysis of flash floods that have occurred in Slovakia. The work is organized into the following two parts: The first part focuses on estimating the rainfall-runoff relationships for 3 major flash flood events, which were among the most severe events since 1998 and caused a loss of lives and a large amount of damage. The selected flash floods occurred on the 20th of July, 1998, in the Malá Svinka and Dubovický Creek basins; the 24th of July, 2001, at Štrbský Creek; and the 19th of June, 2004, at Turniansky Creek. The analysis aims to assess the flash flood peaks and rainfall-runoff properties by combining post-flood surveys and the application of hydrological and hydraulic post-event analyses. Next, a spatially-distributed hydrological model based on the availability of the raster information of the landscape’s topography, soil and vegetation properties, and rainfall data was used to simulate the runoff. The results from the application of the distributed hydrological model were used to analyse the consistency of the surveyed peak discharges with respect to the estimated rainfall properties and drainage basins. In the second part these data were combined with observations from flash flood events which were observed during the last 100 years and are focused on an analysis of the relationship between the flood peaks and the catchment area. The envelope curve was shown to exhibit a more pronounced decrease with the catchment size with respect to other flash flood relationships found in the Mediterranean region. The differences between the two relationships mainly reflect changes in the coverage of the storm sizes and hydrological characteristics between the two regions.


Author(s):  
X. Cui ◽  
W. Sun ◽  
J. Teng ◽  
H. Song ◽  
X. Yao

Abstract. Calibration of hydrological models in ungauged basins is now a hot research topic in the field of hydrology. In addition to the traditional method of parameter regionalization, using discontinuous flow observations to calibrate hydrological models has gradually become popular in recent years. In this study, the possibility of using a limited number of river discharge data to calibrate a distributed hydrological model, the Soil and Water Assessment Tool (SWAT), was explored. The influence of the quantity of discharge measurements on model calibration in the upper Heihe Basin was analysed. Calibration using only one year of daily discharge measurements was compared with calibration using three years of discharge data. The results showed that the parameter values derived from calibration using one year’s data could achieve similar model performance with calibration using three years’ data, indicating that there is a possibility of using limited numbers of discharge data to calibrate the SWAT model effectively in poorly gauged basins.


RBRH ◽  
2017 ◽  
Vol 22 (0) ◽  
Author(s):  
Ana Clara Lazzari Franco ◽  
Nadia Bernardi Bonumá

ABSTRACT Although intrinsic, uncertainty for hydrological model estimation is not always reported. The aim of this study is to evaluate the use of satellite-based evapotranspiration on SWAT model calibration, regarding uncertainty and model performance in streamflow simulation. The SWAT model was calibrated in a monthly step and validated in monthly (streamflow and evapotranspiration) and daily steps (streamflow only). The validation and calibration period covers the years from 2006 to 2009 and the study area is the upper Negro river basin, situated in Santa Catarina and Paraná. SWAT-CUP was used to calibrate and validate the model, using SUFI-2 with KGE (Kling-Gupta Efficiency) as objective function. Different calibration strategies were evaluated, considering single-variable and multi-variable calibration, using streamflow and evapotranspiration. Compared to conventional single-variable calibration (streamflow only), multi-variable calibration (streamflow and evapotranspiration, simultaneously) produce better streamflow performance, especially for low flow periods and daily step validation. Despite that, no evidence of reduction of streamflow prediction uncertainty was observed. SWAT model calibration using solely evapotranspiration still requires further studies.


Sign in / Sign up

Export Citation Format

Share Document