scholarly journals BOREAS – a new MAX-DOAS profile retrieval algorithm for aerosols and trace gases

2018 ◽  
Vol 11 (12) ◽  
pp. 6833-6859 ◽  
Author(s):  
Tim Bösch ◽  
Vladimir Rozanov ◽  
Andreas Richter ◽  
Enno Peters ◽  
Alexei Rozanov ◽  
...  

Abstract. We present a new MAX-DOAS profiling algorithm for aerosols and trace gases, BOREAS, which utilizes an iterative solution method including Tikhonov regularization and the optimal estimation technique. The aerosol profile retrieval is based on a novel approach in which the absorption depth of O4 is directly used in order to retrieve extinction coefficient profiles instead of the commonly used perturbation theory method. The retrieval of trace gases is done with the frequently used optimal estimation method but significant improvements are presented on how to deal with wrongly weighted a priori constraints and for scenarios in which the a priori profile is inaccurate. Performance tests are separated into two parts. First, we address the general sensitivity of the retrieval to the example of synthetic data calculated with the radiative transfer model SCIATRAN. In the second part of the study, we demonstrate BOREAS profiling accuracy by validating the results with the help of ancillary measurements carried out during the CINDI-2 campaign in Cabauw, the Netherlands, in 2016. The synthetic sensitivity tests indicate that the regularization between measurement and a priori constraints is insufficient when knowledge of the true state of the atmosphere is poor. We demonstrate a priori pre-scaling and extensive regularization tests as a tool for the optimization of retrieved profiles. The comparison of retrieval results with in situ, ceilometer, NO2 lidar, sonde and long-path DOAS measurements during the CINDI-2 campaign always shows high correlations with coefficients greater than 0.75. The largest differences can be found in the morning hours, when the planetary boundary layer is not yet fully developed and the concentration of trace gases and aerosol, as a result of a low night-time boundary layer having formed, is focused in a shallow, near-surface layer.

2018 ◽  
Author(s):  
Tim Bösch ◽  
Vladimir Rozanov ◽  
Andreas Richter ◽  
Enno Peters ◽  
Alexei Rozanov ◽  
...  

Abstract. We present a new MAX-DOAS profiling algorithm for aerosols and trace gases, BOREAS, which utilizes an iterative solution method including Tikhonov regularization and the optimal estimation technique. Performance tests are separated into two parts. First, we address the general sensitivity of the retrieval on the example of synthetic data calculated with the radiative transfer model SCIATRAN. In a second part of the study, we demonstrate BOREAS profiling accuracy by validating results with the help of ancillary measurements carried out during the CINDI-2 campaign in Cabauw, the Netherlands in 2016. The synthetic sensitivity tests indicate, that the regularization between measurement and a priori constraints is insufficient when knowledge of the true state of the atmosphere is poor. We demonstrate a priori pre-scaling and extensive regularization tests as a tool for the optimization of retrieved profiles. The comparison of retrieval results with in situ, ceilometer, NO2 LIDAR, sonde and long path DOAS measurements during the CINDI-2 campaign always shows high correlations with coefficients greater than 0.79. The largest differences can be found in the morning hours, when the planetary boundary layer is not yet fully developed and the concentration of trace gases and aerosol, as a result of a low night-time boundary layer having formed, is focused in a shallow, surface near layer.


2020 ◽  
Author(s):  
Yang Wang ◽  
Arnoud Apituley ◽  
Alkiviadis Bais ◽  
Steffen Beirle ◽  
Nuria Benavent ◽  
...  

Abstract. We present the inter-comparison of delta slant column densities (SCDs) and vertical profiles of nitrous acid (HONO) derived from measurements of different MAX-DOAS instruments and using different inversion algorithms during the Second Cabauw Inter-comparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2), in September 2016, at Cabauw, The Netherlands (51.97° N, 4.93° E). Systematic discrepancies of HONO delta SCDs are observed in the range of ±0.3 × 1015 molecules cm−2, which is half of the typical random discrepancy of 0.6 × 1015 molecules cm−2. For a typical high HONO delta SCD of 2 × 1015 molecules cm−2, the relative systematic and random discrepancies are about 15 % and 30 %, respectively. The inter-comparison of HONO profiles shows that both systematic and random discrepancies of HONO VCDs and near-surface volume mixing ratios (VMRs) are mostly in the range of ~ ±0.5 × 1015 molecules cm−2 and ~ ±0.1 ppb (typically ~ 20 %). Further we find that the discrepancies of the retrieved HONO profiles are dominated by discrepancies of the HONO delta SCDs. The profile retrievals only contribute to the discrepancies of the HONO profiles by ~ 5 %. However, some data sets with substantial larger discrepancies than the typical values indicate that inappropriate implementations of profile inversion algorithms and configurations of radiative transfer models in the profile retrievals can also be an important uncertainty source. In addition, estimations of measurement uncertainties of HONO dSCDs, which can significantly impact profile retrievals using the optimal estimation method, need to consider not only DOAS fit errors, but also atmospheric variability, especially for an instrument with a DOAS fit error lower than ~ 3 × 1015 molecules cm−2. The MAX-DOAS results during the CINDI-2 campaign indicate that the peak HONO levels (e.g. near-surface VMRs of ~ 0.4 ppb) often appeared in the early morning and below 0.2 km. The near-surface VMRs retrieved from the MAX-DOAS observations are compared with those measured using a co-located long-path DOAS instrument. The systematic differences are smaller than 0.15 ppb and 0.07 ppb during early morning and around noon, respectively. Since true HONO values at high altitudes are not known in the absence of real measurements, in order to evaluate the abilities of profile inversion algorithms to respond to different HONO profile shapes, we performed sensitivity studies using synthetic HONO delta SCDs simulated by a radiative transfer model with assumed HONO profiles. The tests indicate that the profile inversion algorithms based on the optimal estimation method with proper configurations can well reproduce the different HONO profile shapes. Therefore we conclude that the feature of HONO accumulated near the surface derived from MAX-DOAS measurements are expected to well represent the ambient HONO profiles.


2014 ◽  
Vol 7 (11) ◽  
pp. 11653-11709 ◽  
Author(s):  
I. Ortega ◽  
T. Koenig ◽  
R. Sinreich ◽  
D. Thomson ◽  
R. Volkamer

Abstract. We present an innovative instrument telescope, and describe a retrieval method to probe 3-D distributions of atmospheric trace gases that are relevant to air pollution and tropospheric chemistry. The University of Colorado (CU) two dimensional (2-D) Multi-AXis-Differential Optical Absorption Spectroscopy (CU 2D-MAX-DOAS) instrument measures nitrogen dioxide (NO2), formaldehyde (HCHO), glyoxal (CHOCHO), oxygen dimer (O2-O2, or O4) and water vapor (H2O); also nitrous acid (HONO), bromine monoxide (BrO), iodine monoxide (IO) among other gases can in principle be measured. Information about aerosols is derived through coupling with a radiative transfer model (RTM). The 2-D telescope has 3 modes of operation: (mode 1) measures solar scattered photons from any pair of elevation angle (−20° < EA < +90° or zenith; zero is to the horizon) and azimuth angle (−180° < AA < +180°; zero being North), (mode 2) measures any set of AA at constant EA (almucantar scans); and (mode 3) tracks the direct solar beam via a separate view port. Vertical profiles of trace gases are measured, and used to estimate planetary boundary layer height (PBL). Horizontal distributions are then derived using PBL and parameterization of RTM (Sinreich et al., 2013). NO2 is evaluated at different wavelengths (350, 450, and 560 nm), exploiting the fact that the effective path length varies systematically with wavelength. The area probed is constrained by O4 observations at nearby wavelengths, and has an effective radius of 7.5 to 20 km around the instrument location; i.e., up to 1250 km2 can be sampled near-instantaneously, and with high time resolution. The instrument was deployed as part of the Multi Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) in Mainz, Germany from 7 June to 6 July 2013. We present first measurements (modes 1 and 2 only) and describe a four-step retrieval to derive (a) boundary layer vertical profiles of NO2 and PBL; (b) near-surface horizontal distributions of NO2; (c) range resolved NO2 horizontal distribution measurements using an "onion peeling" approach; and (d) the ratios HCHO-to-NO2 (RFN), CHOCHO-to-NO2 (RGN), and CHOCHO-to-HCHO (RGF) at 14 pre-set azimuth angles distributed over a 360° view. 2D-MAX-DOAS provides an innovative, regional perspective about trace gases, their spatial and temporal concentration gradients, and maximizes information to compare near-surface observations with atmospheric models and satellites.


2008 ◽  
Vol 8 (7) ◽  
pp. 1963-1983 ◽  
Author(s):  
M. Scharringhausen ◽  
A. C. Aikin ◽  
J. P. Burrows ◽  
M. Sinnhuber

Abstract. We present a joint retrieval as well as first results for mesospheric air density and mesospheric Magnesium species (Mg and Mg+) using limb data from the SCIAMACHY instrument on board the European ENVISAT satellite.considered. These species feature Metallic species like neutral Mg, ionized Mg+ and others (Fe, Si, Li, etc.) ablate from meteoric dust, enter the gas phase and occur at high altitudes (≥70 km). Emissions from these species are clearly observed in the SCIAMACHY limb measurements. These emissions are used to retrieve total and thermospheric column densities as well as preliminary profiles of metallic species in the altitude range of 70–92 km. In this paper, neutral Magnesium as well as its ionized counterpart Mg+ is considered. These species feature resonance fluorescence in the wavelength range 279 and 285 nm and thus have a rather simple excitation process. A radiative transfer model (RTM) for the mesosphere has been developed and validated. Based on a ray tracing kernel, radiances in a large wavelength range from 240–300 nm covering limb as well as nadir geometry can be calculated. The forward model has been validated and shows good agreement with established models in the given wavelength range and a large altitude range. The RTM has been coupled to a retrieval based on Optimal Estimation. Air density is retrieved from Rayleigh backscattered light. Mesospheric Mg and Mg+ number densities are retrieved from their emission signals observed in the limb scans of SCIAMACHY. Other species like iron, silicon, OH and NO can be investigated in principle with the same algorithm. Based on the retrieval presented here, SCIAMACHY offers the opportunity to investigate mesospheric species on a global scale and with good vertical resolution for the first time.


2014 ◽  
Vol 7 (6) ◽  
pp. 1547-1570 ◽  
Author(s):  
C. Viatte ◽  
K. Strong ◽  
K. A. Walker ◽  
J. R. Drummond

Abstract. We present a five-year time series of seven tropospheric species measured using a ground-based Fourier transform infrared (FTIR) spectrometer at the Polar Environment Atmospheric Research Laboratory (PEARL; Eureka, Nunavut, Canada; 80°05' N, 86°42' W) from 2007 to 2011. Total columns and temporal variabilities of carbon monoxide (CO), hydrogen cyanide (HCN) and ethane (C2H6) as well as the first derived total columns at Eureka of acetylene (C2H2), methanol (CH3OH), formic acid (HCOOH) and formaldehyde (H2CO) are investigated, providing a new data set in the sparsely sampled high latitudes. Total columns are obtained using the SFIT2 retrieval algorithm based on the optimal estimation method. The microwindows as well as the a priori profiles and variabilities are selected to optimize the information content of the retrievals, and error analyses are performed for all seven species. Our retrievals show good sensitivities in the troposphere. The seasonal amplitudes of the time series, ranging from 34 to 104%, are captured while using a single a priori profile for each species. The time series of the CO, C2H6 and C2H2 total columns at PEARL exhibit strong seasonal cycles with maxima in winter and minima in summer, in opposite phase to the HCN, CH3OH, HCOOH and H2CO time series. These cycles result from the relative contributions of the photochemistry, oxidation and transport as well as biogenic and biomass burning emissions. Comparisons of the FTIR partial columns with coincident satellite measurements by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) show good agreement. The correlation coefficients and the slopes range from 0.56 to 0.97 and 0.50 to 3.35, respectively, for the seven target species. Our new data set is compared to previous measurements found in the literature to assess atmospheric budgets of these tropospheric species in the high Arctic. The CO and C2H6concentrations are consistent with negative trends observed over the Northern Hemisphere, attributed to fossil fuel emission decrease. The importance of poleward transport for the atmospheric budgets of HCN and C2H2 is highlighted. Columns and variabilities of CH3OH and HCOOH at PEARL are comparable to previous measurements performed at other remote sites. However, the small columns of H2CO in early May might reflect its large atmospheric variability and/or the effect of the updated spectroscopic parameters used in our retrievals. Overall, emissions from biomass burning contribute to the day-to-day variabilities of the seven tropospheric species observed at Eureka.


2019 ◽  
Vol 11 (9) ◽  
pp. 1061 ◽  
Author(s):  
Xi Chen ◽  
Yi Liu ◽  
Dongxu Yang ◽  
Zhaonan Cai ◽  
Hongbin Chen ◽  
...  

Aerosols significantly affect carbon dioxide (CO2) retrieval accuracy and precision by modifying the light path. Hyperspectral measurements in the near infrared and shortwave infrared (NIR/SWIR) bands from the generation of new greenhouse gas satellites (e.g., the Chinese Global Carbon Dioxide Monitoring Scientific Experimental Satellite, TanSat) contain aerosol information for correction of scattering effects in the retrieval. Herein, a new approach is proposed for optimizing the aerosol model used in the TanSat CO2 retrieval algorithm to reduce CO2 uncertainties associated with aerosols. The weighting functions of hyperspectral observations with respect to elements in the state vector are simulated by a forward radiative transfer model. Using the optimal estimation method (OEM), the information content and each component of the CO2 column-averaged dry-air mole fraction (XCO2) retrieval errors from the TanSat simulations are calculated for typical aerosols which are described by Aerosol Robotic Network (AERONET) inversion products at selected sites based on the a priori and measurement assumptions. The results indicate that the size distribution parameters (reff, veff), real refractive index coefficient of fine mode (arf) and fine mode fraction (fmf) dominate the interference errors, with each causing 0.2–0.8 ppm of XCO2 errors. Given that only 4–7 degrees of freedom for signal (DFS) of aerosols can be obtained simultaneously and CO2 information decreases as more aerosol parameters are retrieved, four to seven aerosol parameters are suggested as the most appropriate for inclusion in CO2 retrieval. Focusing on only aerosol-induced XCO2 errors, forward model parameter errors, rather than interference errors, are dominant. A comparison of these errors across different aerosol parameter combination groups reveals that fewer aerosol-induced XCO2 errors are found when retrieving seven aerosol parameters. Therefore, the model selected as the optimal aerosol model includes aerosol optical depth (AOD), peak height of aerosol profile (Hp), width of aerosol profile (Hw), effective variance of fine mode aerosol (vefff), effective radius of coarse mode aerosol (reffc), coefficient a of the real part of the refractive index for the fine mode and coarse mode (arf and arc), with the lowest error of less than 1.7 ppm for all aerosol and surface types. For marine aerosols, only five parameters (AOD, Hp, Hw, reffc and arc) are recommended for the low aerosol information. This optimal aerosol model therefore offers a theoretical foundation for improving CO2 retrieval precision from real TanSat observations in the future.


2012 ◽  
Vol 5 (4) ◽  
pp. 5993-6035 ◽  
Author(s):  
F. Ernst ◽  
C. von Savigny ◽  
A. Rozanov ◽  
V. Rozanov ◽  
K.-U. Eichmann ◽  
...  

Abstract. Stratospheric aerosol extinction profiles are retrieved from SCIAMACHY/Envisat limb-scatter observations in the visible spectral range. The retrieval algorithm is based on a colour-index approach using the normalized limb-radiance profiles at 470 nm and 750 nm wavelength. The optimal estimation approach in combination with the radiative transfer model SCIATRAN is employed for the retrievals. This study presents a detailed description of the retrieval algorithm, and a sensitivity analysis investigating the impact of the most important parameters that affect the aerosol extinction profile retrieval accuracy. It is found that the parameter with the largest impact is surface albedo, particularly for SCIAMACHY observations in the Southern Hemisphere where the error in stratospheric aerosol extinction can be up to 50% if the surface albedo is not well known. The effect of errors in the assumed ozone and neutral density profiles on the aerosol profile retrievals is with generally less than 6% relatively small. The aerosol extinction profiles retrieved from SCIAMACHY are compared with co-located SAGE II solar occultation measurements of stratospheric aerosol extinction during the period 2003–2005. The mean aerosol extinction profiles averaged over all co-locations agree to within 20% between 15 and 35 km altitude. However, larger differences are observed at specific latitudes.


2010 ◽  
Vol 49 (3) ◽  
pp. 381-393 ◽  
Author(s):  
Prabhat K. Koner ◽  
Alessandro Battaglia ◽  
Clemens Simmer

Abstract A dynamic regularization scheme for rain-rate retrievals from attenuated radar measurements is presented. Most regularization techniques, including the optimal estimation method, use the state-space parameters to regularize the problem, which will always lead to a bias in the solution. To avoid this problem the authors introduce an evolutionary regularization technique, which is based on the spatial derivative of the measured reflectivity profile and allows for a bias-free global solution. The regularization strength is determined by the quadratic eigenvalue solution using the regularized total least squares method. With the new method, the authors perform a retrieval of rain-rate profiles from simulated measurements of a nadir-pointing W-band (94 GHz) radar, in a configuration similar to the cloud radar employed on CloudSat. The simulations assume that multiple scattering is negligible and only liquid hydrometeors are taken into account. The authors compare the results of this method with the outcome of an optimal estimation method and demonstrate that their method is superior in terms of reliability, correlation coefficient, and dispersion to the optimal estimation method for layers experiencing high values of attenuation; therefore, the a priori bias typical for optimal estimation solutions is avoided.


2013 ◽  
Vol 6 (6) ◽  
pp. 1521-1532 ◽  
Author(s):  
R. Sinreich ◽  
A. Merten ◽  
L. Molina ◽  
R. Volkamer

Abstract. We present a novel parameterization method to convert multi-axis differential optical absorption spectroscopy (MAX-DOAS) differential slant column densities (dSCDs) into near-surface box-averaged volume mixing ratios. The approach is applicable inside the planetary boundary layer under conditions with significant aerosol load, and builds on the increased sensitivity of MAX-DOAS near the instrument altitude. It parameterizes radiative transfer model calculations and significantly reduces the computational effort, while retrieving ~ 1 degree of freedom. The biggest benefit of this method is that the retrieval of an aerosol profile, which usually is necessary for deriving a trace gas concentration from MAX-DOAS dSCDs, is not needed. The method is applied to NO2 MAX-DOAS dSCDs recorded during the Mexico City Metropolitan Area 2006 (MCMA-2006) measurement campaign. The retrieved volume mixing ratios of two elevation angles (1° and 3°) are compared to volume mixing ratios measured by two long-path (LP)-DOAS instruments located at the same site. Measurements are found to agree well during times when vertical mixing is expected to be strong. However, inhomogeneities in the air mass above Mexico City can be detected by exploiting the different horizontal and vertical dimensions probed by the MAX-DOAS and LP-DOAS instruments. In particular, a vertical gradient in NO2 close to the ground can be observed in the afternoon, and is attributed to reduced mixing coupled with near-surface emission inside street canyons. The existence of a vertical gradient in the lower 250 m during parts of the day shows the general challenge of sampling the boundary layer in a representative way, and emphasizes the need of vertically resolved measurements.


2009 ◽  
Vol 9 (2) ◽  
pp. 9267-9290 ◽  
Author(s):  
H. Herbin ◽  
D. Hurtmans ◽  
C. Clerbaux ◽  
L. Clarisse ◽  
P.-F. Coheur

Abstract. In this paper we analyze distributions of water vapour isotopologues in the troposphere using infrared spectra recorded by the Infrared Atmospheric Sounding Interferometer (IASI), which operates onboard the Metop satellite in nadir geometry. The simultaneous uncorrelated retrieval of H216O and HDO was performed on radiance measurements using a line-by-line radiative transfer model and an inversion procedure based on the Optimal Estimation Method (OEM). The characterizations of the retrieved products in terms of vertical sensitivity and error budgets show that IASI measurements contain up to 6 independent pieces of information on the vertical distribution of H216O and up to 3.5 for HDO from the surface up to the upper troposphere (0–20 km). The H216O retrieved profiles are in good agreement with local sonde measurements at different latitudes during different times of the year. Our results demonstrate the ability of the IASI instrument to monitor atmospheric isotopologic water vapour distributions with unprecedented sensitivity. As a case study, we analyse concentration distributions and spatio-temporal variations of H216O and HDO during the October 2007 Krosa super-typhoon over South-East Asia and show with this example the IASI potential to capture variations in the HDO/H216O isotopologic ratio values over space and time.


Sign in / Sign up

Export Citation Format

Share Document