scholarly journals Characterising optical array particle imaging probes: implications for small-ice-crystal observations

2021 ◽  
Vol 14 (3) ◽  
pp. 1917-1939
Author(s):  
Sebastian O'Shea ◽  
Jonathan Crosier ◽  
James Dorsey ◽  
Louis Gallagher ◽  
Waldemar Schledewitz ◽  
...  

Abstract. The cloud particle concentration, size, and shape data from optical array probes (OAPs) are routinely used to parameterise cloud properties and constrain remote sensing retrievals. This paper characterises the optical response of OAPs using a combination of modelling, laboratory, and field experiments. Significant uncertainties are found to exist with such probes for ice crystal measurements. We describe and test two independent methods to constrain a probe's sample volume that remove the most severely mis-sized particles: (1) greyscale image analysis and (2) co-location using stereoscopic imaging. These methods are tested using field measurements from three research flights in cirrus. For these cases, the new methodologies significantly improve agreement with a holographic imaging probe compared to conventional data-processing protocols, either removing or significantly reducing the concentration of small ice crystals (< 200 µm) in certain conditions. This work suggests that the observational evidence for a ubiquitous mode of small ice particles in ice clouds is likely due to a systematic instrument bias. Size distribution parameterisations based on OAP measurements need to be revisited using these improved methodologies.

2020 ◽  
Author(s):  
Sebastian O'Shea ◽  
Jonathan Crosier ◽  
James Dorsey ◽  
Louis Gallagher ◽  
Waldemar Schledewitz ◽  
...  

Abstract. The cloud particle concentration, size and shape data from optical array probes (OAPs) are routinely used to parameterise cloud properties and constrain remote sensing retrievals. This paper characterises the optical response of OAPs using a combination of modelling, laboratory and field experiments. Significant uncertainties are found to exist with such probes for ice crystal measurements. We describe and test two independent methods to constrain a probe's sample volume that removes the most severely mis-sized particles: (1) greyscale image analysis and (2) co-location using stereoscopic imaging. These methods are tested using field measurements from three research flights in cirrus. For these cases, the new methodologies significantly improve agreement with a holographic imaging probe compared to conventional data processing protocols, either removing or significantly reducing the concentration of small ice crystals (


2000 ◽  
Vol 39 (10) ◽  
pp. 1797-1804 ◽  
Author(s):  
Jeffrey R. Key ◽  
Janet M. Intrieri

Abstract An accurate determination of cloud particle phase is required for the retrieval of other cloud properties from satellite and for radiative flux calculations in climate models. The physical principles underlying phase determination using the advanced very high resolution radiometer (AVHRR) satellite sensor are described for daytime and nighttime, cold cloud and warm cloud conditions. It is demonstrated that the spectral properties of cloud particles provide necessary, but not sufficient, information for phase determination, because the relationship between the cloud and surface temperatures is also important. Algorithms based on these principles are presented and tested. Validation with lidar and aircraft data from two Arctic field experiments shows the procedures to be accurate in identifying the phase of homogeneous water and ice clouds, though optically thin, mixed-phase, and multilayer clouds are problematic.


2015 ◽  
Vol 15 (20) ◽  
pp. 28517-28573 ◽  
Author(s):  
E. Erfani ◽  
D. L. Mitchell

Abstract. Ice particle mass- and projected area-dimension (m-D and A-D) power laws are commonly used in the treatment of ice cloud microphysical and optical properties and the remote sensing of ice cloud properties. Although there has long been evidence that a single m-D or A-D power law is often not valid over all ice particle sizes, few studies have addressed this fact. This study develops self-consistent m-D and A-D expressions that are not power laws, but can easily be reduced to power laws for the ice particle size (maximum dimension or D) range of interest, and they are valid over a much larger D range than power laws. This was done by combining field measurements of individual ice particle m and D formed at temperature T < −20 °C with 2-dimensional stereo (2D-S) and Cloud Particle Imager (CPI) probe measurements (or estimates) of D, A and m in synoptic and anvil ice clouds at similar temperatures. The resulting m-D and A-D expressions are functions of temperature and cloud type (synoptic vs. anvil), and are in good agreement with m-D power laws developed from recent field studies considering the same temperature range (−60 °C < T < −20 °C).


2018 ◽  
Author(s):  
Edward Gryspeerdt ◽  
Odran Sourdeval ◽  
Johannes Quaas ◽  
Julien Delanoë ◽  
Philipp Kühne

Abstract. The ice crystal number concentration (Ni) is a key property of ice clouds, both radiatively and microphysically. However, due to sparse in-situ measurements of ice cloud properties, the controls on the Ni have remained difficult to determine. As more advanced treatments of ice clouds are included in global models, it is becoming increasingly necessary to develop strong observational constraints on the processes involved. This work uses the DARDAR-LIM Ni retrieval described in part one to investigate the controls of the Ni at a global scale. The retrieved clouds are separated by type. The effects of temperature, proxies for in-cloud updraught and aerosol concentrations are investigated. Variations in the cloud top Ni (Ni(top)) consistent with both homogeneous and heterogeneous nucleation are observed and along with a possible role of aerosol both increasing and decreasing the Ni(top) depending on the prevailing meteorological situation. Away from the cloud top, the Ni displays a different sensitivity to these controlling factors, providing a possible explanation to the low Ni sensitivity to temperature and INP observed in previous in-situ studies. This satellite dataset provides a new way of investigating the response of cloud properties to meteorological and aerosol controls. The results presented in this work increase our confidence in the retrieved Ni and will form the basis for further study into the processes influencing ice and mixed phase clouds.


2017 ◽  
Vol 17 (7) ◽  
pp. 4731-4749 ◽  
Author(s):  
Chenglai Wu ◽  
Xiaohong Liu ◽  
Minghui Diao ◽  
Kai Zhang ◽  
Andrew Gettelman ◽  
...  

Abstract. In this study we evaluate cloud properties simulated by the Community Atmosphere Model version 5 (CAM5) using in situ measurements from the HIAPER Pole-to-Pole Observations (HIPPO) campaign for the period of 2009 to 2011. The modeled wind and temperature are nudged towards reanalysis. Model results collocated with HIPPO flight tracks are directly compared with the observations, and model sensitivities to the representations of ice nucleation and growth are also examined. Generally, CAM5 is able to capture specific cloud systems in terms of vertical configuration and horizontal extension. In total, the model reproduces 79.8 % of observed cloud occurrences inside model grid boxes and even higher (94.3 %) for ice clouds (T ≤ −40 °C). The missing cloud occurrences in the model are primarily ascribed to the fact that the model cannot account for the high spatial variability of observed relative humidity (RH). Furthermore, model RH biases are mostly attributed to the discrepancies in water vapor, rather than temperature. At the micro-scale of ice clouds, the model captures the observed increase of ice crystal mean sizes with temperature, albeit with smaller sizes than the observations. The model underestimates the observed ice number concentration (Ni) and ice water content (IWC) for ice crystals larger than 75 µm in diameter. Modeled IWC and Ni are more sensitive to the threshold diameter for autoconversion of cloud ice to snow (Dcs), while simulated ice crystal mean size is more sensitive to ice nucleation parameterizations than to Dcs. Our results highlight the need for further improvements to the sub-grid RH variability and ice nucleation and growth in the model.


2005 ◽  
Vol 22 (5) ◽  
pp. 528-542 ◽  
Author(s):  
Alexei Korolev ◽  
George A. Isaac

Abstract The data on cloud particle sizes and concentrations collected with the help of aircraft imaging probes [optical array probes OAP-2DC, OAP-2DP, and the High Volume Precipitation Spectrometer (HVPS)] are widely used for cloud parameterization and validation of remote sensing. The goal of the present work is to study the effect of shattering of ice particles during sampling. The shattering of ice particles may occur due to 1) mechanical impact with the probe arms prior to their entering the sample volume, and 2) fragmentation due to interaction with turbulence and wind shear generated by the probe housing. The effect of shattering is characterized by the shattering efficiency that is equal to the ratio of counts of disintegrated particles, to all counts. The shattering efficiency depends on the habit, size, and density of ice particles, probe inlet design, and airspeed. For the case of aggregates, the shattering efficiency may reach 10% or even more. The shattering of ice particles results in an overcounting of small particles and an undercounting of large ones. The number of fragments in the images of shattered particles may reach several hundreds. It was found that particles as small as 600 μm may shatter after impact with the probe arms. The effect of particle shattering should be taken into account during data analysis and carefully considered in future designs of airborne cloud particle size spectrometers.


2011 ◽  
Vol 50 (10) ◽  
pp. 2104-2119 ◽  
Author(s):  
Binod Pokharel ◽  
Gabor Vali

AbstractMeasured 94-GHz reflectivity in midlevel, stratiform ice clouds was compared with reflectivity calculated from size distributions determined with a particle imaging probe. The radar and the particle probe were carried on the same aircraft, the Wyoming King Air, ensuring close spatial correspondence between the two measurements. Good overall agreement was found within the range from −18 to +16 dBZ, but there is an important degree of scatter in the results. Two different assumptions about particle density led to calculated values that bracket the observations. The agreement found for reflectivity supports the use of the data for establishing relationships between the measured reflectivity and ice water content and between precipitation rate and reflectivity. The resulting equation for ice water content (IWC vs Z) agrees with the results of Liu and Illingworth within a factor of 2 over the range of overlap between the two datasets. The equation here reported for precipitation rate (PR vs Z) has a shallower slope in the power-law relationship than that reported by Matrosov as a consequence of sampling particles of greater densities. Because the radar and the particle probe were collocated on the same platform, errors arising from differences in sampling locations and volumes were minimized. Therefore it is concluded that the roughly factor-of-10 spread in IWC and in PR for given Z is, primarily, a result of variations in ice crystal shape and density. Retrievals of IWC and PR from cloud radar data can be expected to have that level of uncertainty.


2016 ◽  
Vol 16 (7) ◽  
pp. 4379-4400 ◽  
Author(s):  
Ehsan Erfani ◽  
David L. Mitchell

Abstract. Ice particle mass- and projected area-dimension (m-D and A-D) power laws are commonly used in the treatment of ice cloud microphysical and optical properties and the remote sensing of ice cloud properties. Although there has long been evidence that a single m-D or A-D power law is often not valid over all ice particle sizes, few studies have addressed this fact. This study develops self-consistent m-D and A-D expressions that are not power laws but can easily be reduced to power laws for the ice particle size (maximum dimension or D) range of interest, and they are valid over a much larger D range than power laws. This was done by combining ground measurements of individual ice particle m and D formed at temperature T  <  −20 °C during a cloud seeding field campaign with 2-D stereo (2D-S) and cloud particle imager (CPI) probe measurements of D and A, and estimates of m, in synoptic and anvil ice clouds at similar temperatures. The resulting m-D and A-D expressions are functions of temperature and cloud type (synoptic vs. anvil), and are in good agreement with m-D power laws developed from recent field studies considering the same temperature range (−60 °C  <  T  <  −20 °C).


2017 ◽  
Vol 34 (1) ◽  
pp. 117-136 ◽  
Author(s):  
D. Leroy ◽  
E. Fontaine ◽  
A. Schwarzenboeck ◽  
J. W. Strapp ◽  
A. Korolev ◽  
...  

AbstractHigh ice water content (IWC) regions in mesoscale convective systems (MCSs) are a potential threat to commercial aviation, as they are suspected to cause in-service engine power-loss events and air data probe malfunctions. To investigate this, the high-altitude ice crystals (HAIC)/high ice water content (HIWC) projects set up a first field campaign in Darwin (Australia) in 2014. The airborne instrumentation was selected to provide the most accurate measurements of both the bulk total water content (TWC), using a specially developed isokinetic evaporator, and the individual ice crystals properties, using particle imaging probes.This study focuses on determining the size ranges of ice crystals responsible for the mass in high IWC regions, defined here as cloud regions with IWC greater than 1.5 g m−3. It is shown that for high IWC areas in most of the encountered MCSs, median mass diameters (MMDs) of ice crystals range from 250 to 500 μm and decrease with increasing TWC and decreasing temperature. At the same time, the mass contribution of the smallest crystals (below 100 μm) remains generally low (below 15%).In contrast, data from two flight missions in a long-lasting quasi-stationary tropical storm reveal that high IWC values can also be associated with MMDs in the range 400–800 μm and peak values of up to 2 mm. Ice crystal images suggest a major growth contribution by vapor deposition (columns, capped columns) even for such larger MMD values.


2020 ◽  
Author(s):  
Sebastian O'Shea ◽  
Jonathan Crosier ◽  
James Dorsey ◽  
Louis Gallagher ◽  
Waldemar Schledewitz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document