scholarly journals Developing and bounding ice particle mass- and area-dimension expressions for use in atmospheric models and remote sensing

2016 ◽  
Vol 16 (7) ◽  
pp. 4379-4400 ◽  
Author(s):  
Ehsan Erfani ◽  
David L. Mitchell

Abstract. Ice particle mass- and projected area-dimension (m-D and A-D) power laws are commonly used in the treatment of ice cloud microphysical and optical properties and the remote sensing of ice cloud properties. Although there has long been evidence that a single m-D or A-D power law is often not valid over all ice particle sizes, few studies have addressed this fact. This study develops self-consistent m-D and A-D expressions that are not power laws but can easily be reduced to power laws for the ice particle size (maximum dimension or D) range of interest, and they are valid over a much larger D range than power laws. This was done by combining ground measurements of individual ice particle m and D formed at temperature T  <  −20 °C during a cloud seeding field campaign with 2-D stereo (2D-S) and cloud particle imager (CPI) probe measurements of D and A, and estimates of m, in synoptic and anvil ice clouds at similar temperatures. The resulting m-D and A-D expressions are functions of temperature and cloud type (synoptic vs. anvil), and are in good agreement with m-D power laws developed from recent field studies considering the same temperature range (−60 °C  <  T  <  −20 °C).

2015 ◽  
Vol 15 (20) ◽  
pp. 28517-28573 ◽  
Author(s):  
E. Erfani ◽  
D. L. Mitchell

Abstract. Ice particle mass- and projected area-dimension (m-D and A-D) power laws are commonly used in the treatment of ice cloud microphysical and optical properties and the remote sensing of ice cloud properties. Although there has long been evidence that a single m-D or A-D power law is often not valid over all ice particle sizes, few studies have addressed this fact. This study develops self-consistent m-D and A-D expressions that are not power laws, but can easily be reduced to power laws for the ice particle size (maximum dimension or D) range of interest, and they are valid over a much larger D range than power laws. This was done by combining field measurements of individual ice particle m and D formed at temperature T < −20 °C with 2-dimensional stereo (2D-S) and Cloud Particle Imager (CPI) probe measurements (or estimates) of D, A and m in synoptic and anvil ice clouds at similar temperatures. The resulting m-D and A-D expressions are functions of temperature and cloud type (synoptic vs. anvil), and are in good agreement with m-D power laws developed from recent field studies considering the same temperature range (−60 °C < T < −20 °C).


2020 ◽  
Author(s):  
Jonathan Jiang ◽  
Hui Su ◽  
Qing Yue ◽  
Pekka Kangaslahti

&lt;p&gt;We present a simulated simultaneous retrieval of mass mean cloud ice particle effective diameter, ice water content, water vapor, and temperature profiles using a combination of a 94-GHz cloud radar and multi-frequency (118, 183, 240, 310, 380, 664, and 850 GHz) millimeter- and submillimeter-wave radiometers from a space platform. The retrieval capabilities and uncertainties of the combined radar and microwave radiometers are quantified. We show that this combined active and passive remote sensing approach with SmallSat technologies addresses a gap in the current state-of-the-art remote sensing measurements of ice cloud properties, especially deriving vertical profiles of ice cloud particle sizes in the atmosphere together with the ambient thermodynamic conditions. Therefore, this new approach can serve as a plausible candidate for future missions that target cloud and precipitation processes to improve weather forecasts and climate predictions. &amp;#160;&lt;/p&gt;


2021 ◽  
Vol 14 (3) ◽  
pp. 1917-1939
Author(s):  
Sebastian O'Shea ◽  
Jonathan Crosier ◽  
James Dorsey ◽  
Louis Gallagher ◽  
Waldemar Schledewitz ◽  
...  

Abstract. The cloud particle concentration, size, and shape data from optical array probes (OAPs) are routinely used to parameterise cloud properties and constrain remote sensing retrievals. This paper characterises the optical response of OAPs using a combination of modelling, laboratory, and field experiments. Significant uncertainties are found to exist with such probes for ice crystal measurements. We describe and test two independent methods to constrain a probe's sample volume that remove the most severely mis-sized particles: (1) greyscale image analysis and (2) co-location using stereoscopic imaging. These methods are tested using field measurements from three research flights in cirrus. For these cases, the new methodologies significantly improve agreement with a holographic imaging probe compared to conventional data-processing protocols, either removing or significantly reducing the concentration of small ice crystals (< 200 µm) in certain conditions. This work suggests that the observational evidence for a ubiquitous mode of small ice particles in ice clouds is likely due to a systematic instrument bias. Size distribution parameterisations based on OAP measurements need to be revisited using these improved methodologies.


2016 ◽  
Vol 16 (18) ◽  
pp. 12287-12303 ◽  
Author(s):  
Husi Letu ◽  
Hiroshi Ishimoto ◽  
Jerome Riedi ◽  
Takashi Y. Nakajima ◽  
Laurent C.-Labonnote ◽  
...  

Abstract. In this study, various ice particle habits are investigated in conjunction with inferring the optical properties of ice clouds for use in the Global Change Observation Mission-Climate (GCOM-C) satellite programme. We develop a database of the single-scattering properties of five ice habit models: plates, columns, droxtals, bullet rosettes, and Voronoi. The database is based on the specification of the Second Generation Global Imager (SGLI) sensor on board the GCOM-C satellite, which is scheduled to be launched in 2017 by the Japan Aerospace Exploration Agency. A combination of the finite-difference time-domain method, the geometric optics integral equation technique, and the geometric optics method is applied to compute the single-scattering properties of the selected ice particle habits at 36 wavelengths, from the visible to the infrared spectral regions. This covers the SGLI channels for the size parameter, which is defined as a single-particle radius of an equivalent volume sphere, ranging between 6 and 9000 µm. The database includes the extinction efficiency, absorption efficiency, average geometrical cross section, single-scattering albedo, asymmetry factor, size parameter of a volume-equivalent sphere, maximum distance from the centre of mass, particle volume, and six nonzero elements of the scattering phase matrix. The characteristics of calculated extinction efficiency, single-scattering albedo, and asymmetry factor of the five ice particle habits are compared. Furthermore, size-integrated bulk scattering properties for the five ice particle habit models are calculated from the single-scattering database and microphysical data. Using the five ice particle habit models, the optical thickness and spherical albedo of ice clouds are retrieved from the Polarization and Directionality of the Earth's Reflectances-3 (POLDER-3) measurements, recorded on board the Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) satellite. The optimal ice particle habit for retrieving the SGLI ice cloud properties is investigated by adopting the spherical albedo difference (SAD) method. It is found that the SAD is distributed stably due to the scattering angle increases for bullet rosettes with an effective diameter (Deff) of 10 µm and Voronoi particles with Deff values of 10, 60, and 100 µm. It is confirmed that the SAD of small bullet-rosette particles and all sizes of Voronoi particles has a low angular dependence, indicating that a combination of the bullet-rosette and Voronoi models is sufficient for retrieval of the ice cloud's spherical albedo and optical thickness as effective habit models for the SGLI sensor. Finally, SAD analysis based on the Voronoi habit model with moderate particle size (Deff = 60 µm) is compared with the conventional general habit mixture model, inhomogeneous hexagonal monocrystal model, five-plate aggregate model, and ensemble ice particle model. The Voronoi habit model is found to have an effect similar to that found in some conventional models for the retrieval of ice cloud properties from space-borne radiometric observations.


2018 ◽  
Author(s):  
Edward Gryspeerdt ◽  
Odran Sourdeval ◽  
Johannes Quaas ◽  
Julien Delanoë ◽  
Philipp Kühne

Abstract. The ice crystal number concentration (Ni) is a key property of ice clouds, both radiatively and microphysically. However, due to sparse in-situ measurements of ice cloud properties, the controls on the Ni have remained difficult to determine. As more advanced treatments of ice clouds are included in global models, it is becoming increasingly necessary to develop strong observational constraints on the processes involved. This work uses the DARDAR-LIM Ni retrieval described in part one to investigate the controls of the Ni at a global scale. The retrieved clouds are separated by type. The effects of temperature, proxies for in-cloud updraught and aerosol concentrations are investigated. Variations in the cloud top Ni (Ni(top)) consistent with both homogeneous and heterogeneous nucleation are observed and along with a possible role of aerosol both increasing and decreasing the Ni(top) depending on the prevailing meteorological situation. Away from the cloud top, the Ni displays a different sensitivity to these controlling factors, providing a possible explanation to the low Ni sensitivity to temperature and INP observed in previous in-situ studies. This satellite dataset provides a new way of investigating the response of cloud properties to meteorological and aerosol controls. The results presented in this work increase our confidence in the retrieved Ni and will form the basis for further study into the processes influencing ice and mixed phase clouds.


2011 ◽  
Vol 11 (16) ◽  
pp. 8363-8384 ◽  
Author(s):  
A. Protat ◽  
J. Delanoë ◽  
P. T. May ◽  
J. Haynes ◽  
C. Jakob ◽  
...  

Abstract. The high complexity of cloud parameterizations now held in models puts more pressure on observational studies to provide useful means to evaluate them. One approach to the problem put forth in the modelling community is to evaluate under what atmospheric conditions the parameterizations fail to simulate the cloud properties and under what conditions they do a good job. It is the ambition of this paper to characterize the variability of the statistical properties of tropical ice clouds in different tropical "regimes" recently identified in the literature to aid the development of better process-oriented parameterizations in models. For this purpose, the statistical properties of non-precipitating tropical ice clouds over Darwin, Australia are characterized using ground-based radar-lidar observations from the Atmospheric Radiation Measurement (ARM) Program. The ice cloud properties analysed are the frequency of ice cloud occurrence, the morphological properties (cloud top height and thickness), and the microphysical and radiative properties (ice water content, visible extinction, effective radius, and total concentration). The variability of these tropical ice cloud properties is then studied as a function of the large-scale cloud regimes derived from the International Satellite Cloud Climatology Project (ISCCP), the amplitude and phase of the Madden-Julian Oscillation (MJO), and the large-scale atmospheric regime as derived from a long-term record of radiosonde observations over Darwin. The vertical variability of ice cloud occurrence and microphysical properties is largest in all regimes (1.5 order of magnitude for ice water content and extinction, a factor 3 in effective radius, and three orders of magnitude in concentration, typically). 98 % of ice clouds in our dataset are characterized by either a small cloud fraction (smaller than 0.3) or a very large cloud fraction (larger than 0.9). In the ice part of the troposphere three distinct layers characterized by different statistically-dominant microphysical processes are identified. The variability of the ice cloud properties as a function of the large-scale atmospheric regime, cloud regime, and MJO phase is large, producing mean differences of up to a factor 8 in the frequency of ice cloud occurrence between large-scale atmospheric regimes and mean differences of a factor 2 typically in all microphysical properties. Finally, the diurnal cycle of the frequency of occurrence of ice clouds is also very different between regimes and MJO phases, with diurnal amplitudes of the vertically-integrated frequency of ice cloud occurrence ranging from as low as 0.2 (weak diurnal amplitude) to values in excess of 2.0 (very large diurnal amplitude). Modellers should now use these results to check if their model cloud parameterizations are capable of translating a given atmospheric forcing into the correct statistical ice cloud properties.


2007 ◽  
Vol 46 (3) ◽  
pp. 249-272 ◽  
Author(s):  
M. Chiriaco ◽  
H. Chepfer ◽  
P. Minnis ◽  
M. Haeffelin ◽  
S. Platnick ◽  
...  

Abstract This study compares cirrus-cloud properties and, in particular, particle effective radius retrieved by a Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)-like method with two similar methods using Moderate-Resolution Imaging Spectroradiometer (MODIS), MODIS Airborne Simulator (MAS), and Geostationary Operational Environmental Satellite imagery. The CALIPSO-like method uses lidar measurements coupled with the split-window technique that uses the infrared spectral information contained at the 8.65-, 11.15-, and 12.05-μm bands to infer the microphysical properties of cirrus clouds. The two other methods, using passive remote sensing at visible and infrared wavelengths, are the operational MODIS cloud products (using 20 spectral bands from visible to infrared, referred to by its archival product identifier MOD06 for MODIS Terra) and MODIS retrievals performed by the Clouds and the Earth’s Radiant Energy System (CERES) team at Langley Research Center (LaRC) in support of CERES algorithms (using 0.65-, 3.75-, 10.8-, and 12.05-μm bands); the two algorithms will be referred to as the MOD06 and LaRC methods, respectively. The three techniques are compared at two different latitudes. The midlatitude ice-clouds study uses 16 days of observations at the Palaiseau ground-based site in France [Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA)], including a ground-based 532-nm lidar and the MODIS overpasses on the Terra platform. The tropical ice-clouds study uses 14 different flight legs of observations collected in Florida during the intensive field experiment known as the Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida Area Cirrus Experiment (CRYSTAL-FACE), including the airborne cloud-physics lidar and the MAS. The comparison of the three methods gives consistent results for the particle effective radius and the optical thickness but discrepancies in cloud detection and altitudes. The study confirms the value of an active remote sensing method (CALIPSO like) for the study of subvisible ice clouds, in both the midlatitudes and Tropics. Nevertheless, this method is not reliable in optically very thick tropical ice clouds, because of their particular microphysical properties.


2020 ◽  
Vol 59 (1) ◽  
pp. 3-22 ◽  
Author(s):  
Kerstin Ebell ◽  
Tatiana Nomokonova ◽  
Marion Maturilli ◽  
Christoph Ritter

AbstractFor the first time, the cloud radiative effect (CRE) has been characterized for the Arctic site Ny-Ålesund, Svalbard, Norway, including more than 2 years of data (June 2016–September 2018). The cloud radiative effect, that is, the difference between the all-sky and equivalent clear-sky net radiative fluxes, has been derived based on a combination of ground-based remote sensing observations of cloud properties and the application of broadband radiative transfer simulations. The simulated fluxes have been evaluated in terms of a radiative closure study. Good agreement with observed surface net shortwave (SW) and longwave (LW) fluxes has been found, with small biases for clear-sky (SW: 3.8 W m−2; LW: −4.9 W m−2) and all-sky (SW: −5.4 W m−2; LW: −0.2 W m−2) situations. For monthly averages, uncertainties in the CRE are estimated to be small (~2 W m−2). At Ny-Ålesund, the monthly net surface CRE is positive from September to April/May and negative in summer. The annual surface warming effect by clouds is 11.1 W m−2. The longwave surface CRE of liquid-containing cloud is mainly driven by liquid water path (LWP) with an asymptote value of 75 W m−2 for large LWP values. The shortwave surface CRE can largely be explained by LWP, solar zenith angle, and surface albedo. Liquid-containing clouds (LWP > 5 g m−2) clearly contribute most to the shortwave surface CRE (70%–98%) and, from late spring to autumn, also to the longwave surface CRE (up to 95%). Only in winter are ice clouds (IWP > 0 g m−2; LWP < 5 g m−2) equally important or even dominating the signal in the longwave surface CRE.


2015 ◽  
Vol 54 (11) ◽  
pp. 2283-2303 ◽  
Author(s):  
Catherine M. Naud ◽  
Brian H. Kahn

AbstractIce cloud properties in Northern Hemisphere winter extratropical cyclones are examined using the Atmospheric Infrared Sounder (AIRS), version 6, cloud products. The cloud thermodynamic phase product indicates that warm frontal clouds are dominated by ice, liquid-phase clouds occur outside of the warm frontal region, and supercooled or mixed-phase clouds are found in the southwestern quadrant of the cyclones. Stratiform ice clouds populate the warm frontal region and portions of the cold sector while convective ice clouds populate southeastern portions of the warm front and the southeastern quadrant. Total cloud cover is smaller in land cyclones than in ocean cyclones, especially in the southwestern quadrant and the warm frontal region. Ice cloud cover is less over land in the warm frontal region, because land cyclones are generally weaker and drier than ocean cyclones. The impact of cyclone average precipitable water (PW) and the magnitude of 850-hPa vertical ascent ω850 on the thermodynamic phase, occurrence of stratiform or convective ice cloud, ice particle effective diameter, optical thickness, and cloud-top temperature are discussed. When comparing land and ocean cyclones with similar PW and ω850, ice cloud coverage is found to be greater over land. Convective ice cloud occurs more often and is deeper over land. Supercooled cloud appears to persist to colder temperatures over ocean than over land, especially in the warm frontal region. These results suggest that, over land, ice cloud formation in warm fronts is possibly more efficient because of a greater aerosol amount from local or regional sources.


Sign in / Sign up

Export Citation Format

Share Document